Giorgini Maria Grazia, Musso Maurizio, Torii Hajime
Dipartimento di Chimica Fisica ed Inorganica, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
J Phys Chem A. 2005 Jul 7;109(26):5846-54. doi: 10.1021/jp051067h.
The nu(C=O) Raman band frequencies of acetone have been analyzed to separate the contributions of the environmental effect and the vibrational coupling to the gas-to-liquid frequency shifts of this band and to elucidate the changes in these two contributions upon dilution in DMSO. We have measured the frequencies of the nu((12)C=O) band in acetone/DMSO binary mixtures, the nu((13)C=O) band of the acetone-(13)C=O present as a natural abundance isotopic impurity in these mixtures, and both the nu((12)C=O) and nu((13)C=O) bands in the acetone-(12)C=O/acetone-(13)C=O isotopic mixtures at infinite dilution. These frequencies are compared with those of the nu((12)C=O) band in the acetone/CCl(4) binary mixtures measured previously. We have found the following three points: (i) The negative environmental contribution for the nu((12)C=O) oscillator of acetone completely surrounded by DMSO is reduced in magnitude by +5.5 cm(-1) and +7.8 cm(-1) upon the complete substitution of DMSO with acetone and CCl(4) molecules, respectively, indicating the progressive reduction of the attractive forces exerted by the environment on the nu((12)C=O) mode of acetone. (ii) In DMSO and other solvents, the contribution of the vibrational coupling to the frequency of the isotropic Raman nu((12)C=O) band of acetone becomes progressively more negative with increasing acetone concentration up to a value of -5.5 cm(-1), while the contribution to the frequency of the anisotropic Raman band remains approximately unchanged. The only difference resides in the curvatures of the concentration dependencies of these contributions which depend on the relative solute/solvent polarity. (iii) The noncoincidence effect (separation between the anisotropic and isotropic Raman band frequencies) of the nu(C=O) mode in the acetone/DMSO mixtures exhibits a downward (concave) curvature, in contrast to that in the acetone/CCl(4) mixtures, which shows an upward (convex) curvature. This result is supported by MD simulations and by theoretical predictions and is interpreted as arising from the reduction and enhancement of the short-range orientational order of acetone in the acetone/DMSO and acetone/CCl(4) mixtures, respectively.
已对丙酮的ν(C=O)拉曼带频率进行分析,以区分环境效应和振动耦合对该谱带气-液频率位移的贡献,并阐明在二甲基亚砜(DMSO)中稀释时这两种贡献的变化。我们测量了丙酮/DMSO二元混合物中ν((12)C=O)谱带的频率、这些混合物中作为天然丰度同位素杂质存在的丙酮-(13)C=O的ν((13)C=O)谱带,以及在无限稀释下丙酮-(12)C=O/丙酮-(13)C=O同位素混合物中的ν((12)C=O)和ν((13)C=O)谱带。将这些频率与先前测量的丙酮/CCl(4)二元混合物中ν((12)C=O)谱带的频率进行比较。我们发现以下三点:(i) 完全被DMSO包围的丙酮的ν((12)C=O)振子的负环境贡献,在分别用丙酮和CCl(4)分子完全取代DMSO后,幅度分别降低了+5.5 cm(-1)和+7.8 cm(-1),这表明环境对丙酮的ν((12)C=O)模式施加的吸引力逐渐减小。(ii) 在DMSO和其他溶剂中,随着丙酮浓度增加,振动耦合对丙酮各向同性拉曼ν((12)C=O)谱带频率的贡献逐渐变得更负,直至达到-5.5 cm(-1)的值,而对各向异性拉曼谱带频率的贡献大致保持不变。唯一的区别在于这些贡献的浓度依赖性曲线,其取决于相对溶质/溶剂极性。(iii) 丙酮/DMSO混合物中ν(C=O)模式的非重合效应(各向异性和各向同性拉曼谱带频率之间的分离)呈现向下(凹)的曲率,这与丙酮/CCl(4)混合物中呈现向上(凸)曲率的情况相反。该结果得到分子动力学(MD)模拟和理论预测的支持,并被解释为分别源于丙酮/DMSO和丙酮/CCl(4)混合物中丙酮短程取向有序性的降低和增强。