Csonka Gábor I, Ruzsinszky Adrienn, Perdew John P
Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.
J Phys Chem A. 2005 Aug 4;109(30):6779-89. doi: 10.1021/jp0519464.
For accurate thermochemical tests of electronic structure theory, accurate true anharmonic zero-point vibrational energies ZPVE(true) are needed. We discuss several possibilities to extract this information for molecules from density functional or wave function calculations and/or available experimental data: (1) Empirical universal scaling of density-functional-calculated harmonic ZPVE(harm)s, where we find that polyatomics require smaller scaling factors than diatomics. (2) Direct density-functional calculation by anharmonic second-order perturbation theory PT2. (3) Weighted averages of harmonic ZPVE(harm) and fundamental ZPVE(fund) (from fundamental vibrational transition frequencies), with weights (3/4, 1/4) for diatomics and (5/8,3/8) for polyatomics. (4) Experimental correction of the PT2 harmonic contribution, i.e., the estimate ZPVE(true)PT2 + (ZPVE(fund)expt - ZPVE(fund)PT2) for ZPVE(true). The (5/8,3/8) average of method 3 and the additive correction of method 4 have been proposed here. For our database of experimental ZPVE(true), consisting of 27 diatomics and 8 polyatomics, we find that methods 1 and 2, applied to the popular B3LYP and the nonempirical PBE and TPSS functionals and their one-parameter hybrids, yield polyatomic errors on the order of 0.1 kcal/mol. Larger errors are expected for molecules larger than those in our database. Method 3 yields errors on the order of 0.02 kcal/mol, but requires very accurate (e.g., experimental, coupled cluster, or best-performing density functional) input harmonic ZPVE(harm). Method 4 is the best-founded one that meets the requirements of high accuracy and practicality, requiring as experimental input only the highly accurate and widely available ZPVE(fund)expt and producing errors on the order of 0.05 kcal/mol that are relatively independent of functional and basis set. As a part of our study, we also test the ability of the density functionals to predict accurate equilibrium bond lengths and angles for a data set of 21 mostly polyatomic molecules (since all calculated ZPVEs are evaluated at the correspondingly calculated molecular geometries).
为了对电子结构理论进行精确的热化学测试,需要准确的真实非谐零点振动能ZPVE(true)。我们讨论了从密度泛函或波函数计算和/或现有实验数据中提取分子此信息的几种可能性:(1) 对密度泛函计算的谐性ZPVE(harm)进行经验通用标度,我们发现多原子分子所需的标度因子比双原子分子小。(2) 通过非谐二阶微扰理论PT2进行直接密度泛函计算。(3) 谐性ZPVE(harm)和基频ZPVE(fund)(来自基频振动跃迁频率)的加权平均值,双原子分子的权重为(3/4, 1/4),多原子分子的权重为(5/8, 3/8)。(4) 对PT2谐性贡献进行实验校正,即对于ZPVE(true)估计为ZPVE(true)PT2 + (ZPVE(fund)expt - ZPVE(fund)PT2)。这里提出了方法3的(5/8, 3/8)平均值和方法4的加性校正。对于我们由27个双原子分子和8个多原子分子组成的实验ZPVE(true)数据库,我们发现,将方法1和2应用于常用的B3LYP以及非经验的PBE和TPSS泛函及其单参数混合泛函时,多原子分子的误差约为0.1 kcal/mol。对于比我们数据库中分子更大的分子,预计误差会更大。方法3产生的误差约为0.02 kcal/mol,但需要非常精确的(例如实验、耦合簇或性能最佳的密度泛函)输入谐性ZPVE(harm)。方法4是最有依据的,满足高精度和实用性要求,仅需要高度精确且广泛可用的ZPVE(fund)expt作为实验输入,产生的误差约为0.05 kcal/mol,相对独立于泛函和基组。作为我们研究的一部分,我们还测试了密度泛函对2