Suppr超能文献

基于疾病相关功能模块揭示癌症隐藏的遗传异质性。

Peeling off the hidden genetic heterogeneities of cancers based on disease-relevant functional modules.

作者信息

Xu Jian-Zhen, Guo Zheng, Zhang Min, Li Xia, Li Yong-Jin, Rao Shao-Qi

机构信息

Department of Bioinformatics, Harbin Medical University, Harbin, China.

出版信息

Mol Med. 2006 Jan-Mar;12(1-3):25-33. doi: 10.2119/2005-00036.Xu.

Abstract

Discovering molecular heterogeneities in phenotypically defined disease is of critical importance both for understanding pathogenic mechanisms of complex diseases and for finding efficient treatments. Recently, it has been recognized that cellular phenotypes are determined by the concerted actions of many functionally related genes in modular fashions. The underlying modular mechanisms should help the understanding of hidden genetic heterogeneities of complex diseases. We defined a putative disease module to be the functional gene groups in terms of both biological process and cellular localization, which are significantly enriched with genes highly variably expressed across the disease samples. As a validation, we used two large cancer datasets to evaluate the ability of the modules for correctly partitioning samples. Then, we sought the subtypes of complex diffuse large B-cell lymphoma (DLBCL) using a public dataset. Finally, the clinical significance of the identified subtypes was verified by survival analysis. In two validation datasets, we achieved highly accurate partitions that best fit the clinical cancer phenotypes. Then, for the notoriously heterogeneous DLBCL, we demonstrated that two partitioned subtypes using an identified module ("cellular response to stress") had very different 5-year overall rates (65% vs. 14%) and were highly significantly (P < 0.007) correlated with the clinical survival rate. Finally, we built a multivariate Cox proportional-hazard prediction model that included 4 genes as risk predictors for survival over DLBCL. The proposed modular approach is a promising computational strategy for peeling off genetic heterogeneities and understanding the modular mechanisms of human diseases such as cancers.

摘要

在表型定义的疾病中发现分子异质性,对于理解复杂疾病的致病机制以及寻找有效的治疗方法都至关重要。最近,人们认识到细胞表型是由许多功能相关基因以模块化方式协同作用所决定的。潜在的模块化机制应有助于理解复杂疾病隐藏的遗传异质性。我们将一个假定的疾病模块定义为在生物学过程和细胞定位方面的功能基因组,这些基因组在疾病样本中高度可变表达的基因显著富集。作为验证,我们使用了两个大型癌症数据集来评估模块正确划分样本的能力。然后,我们使用一个公共数据集寻找复杂弥漫性大B细胞淋巴瘤(DLBCL)的亚型。最后,通过生存分析验证了所识别亚型的临床意义。在两个验证数据集中,我们实现了高度准确的划分,最符合临床癌症表型。然后,对于众所周知的异质性DLBCL,我们证明使用一个识别出的模块(“细胞对应激的反应”)划分的两个亚型具有非常不同的5年总生存率(65%对14%),并且与临床生存率高度显著相关(P < 0.007)。最后,我们建立了一个多变量Cox比例风险预测模型,其中包括4个基因作为DLBCL生存的风险预测因子。所提出的模块化方法是一种很有前景的计算策略,用于揭示遗传异质性并理解人类疾病如癌症的模块化机制。

相似文献

3
Pathway-based analysis of the hidden genetic heterogeneities in cancers.
Genomics Proteomics Bioinformatics. 2014 Feb;12(1):31-8. doi: 10.1016/j.gpb.2013.12.001. Epub 2014 Jan 22.
5
Towards precise classification of cancers based on robust gene functional expression profiles.
BMC Bioinformatics. 2005 Mar 17;6:58. doi: 10.1186/1471-2105-6-58.
6
Unraveling the hidden heterogeneities of breast cancer based on functional miRNA cluster.
PLoS One. 2014 Jan 30;9(1):e87601. doi: 10.1371/journal.pone.0087601. eCollection 2014.
9
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6.
10
Molecular classification of MYC-driven B-cell lymphomas by targeted gene expression profiling of fixed biopsy specimens.
J Mol Diagn. 2015 Jan;17(1):19-30. doi: 10.1016/j.jmoldx.2014.08.006. Epub 2014 Nov 7.

引用本文的文献

1
Pathway-based analysis of the hidden genetic heterogeneities in cancers.
Genomics Proteomics Bioinformatics. 2014 Feb;12(1):31-8. doi: 10.1016/j.gpb.2013.12.001. Epub 2014 Jan 22.
4
GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology.
BMC Genomics. 2007 Jan 24;8:30. doi: 10.1186/1471-2164-8-30.

本文引用的文献

1
A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis.
Multivariate Behav Res. 1986 Oct 1;21(4):441-58. doi: 10.1207/s15327906mbr2104_5.
2
4
The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma.
Mod Pathol. 2005 Dec;18(12):1591-8. doi: 10.1038/modpathol.3800436.
5
From signatures to models: understanding cancer using microarrays.
Nat Genet. 2005 Jun;37 Suppl:S38-45. doi: 10.1038/ng1561.
6
Integrative analysis of the cancer transcriptome.
Nat Genet. 2005 Jun;37 Suppl:S31-7. doi: 10.1038/ng1570.
7
Towards precise classification of cancers based on robust gene functional expression profiles.
BMC Bioinformatics. 2005 Mar 17;6:58. doi: 10.1186/1471-2105-6-58.
9
10
An integrated tool for microarray data clustering and cluster validity assessment.
Bioinformatics. 2005 Feb 15;21(4):451-5. doi: 10.1093/bioinformatics/bti190. Epub 2004 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验