Szantó Tibor G, Rabai Gyula
Institute of Physical Chemistry, University of Debrecen, P. O. Box 7, H-4010 Debrecen, Hungary.
J Phys Chem A. 2005 Jun 23;109(24):5398-402. doi: 10.1021/jp050833h.
Large-amplitude pH oscillations have been measured during the oxidation of sulfur (IV) species by the bromate ion in aqueous solution in a continuous-flow stirred tank reactor in the absence of any additional oxidizing or reducing reagent. The source of the oscillation in this simple chemical reaction is a two-way oxidation of sulfur (IV) by the bromate ion: (1) the hydrogen-ion-producing self-accelerating oxidation to sulfur (VI) (SO4(2-)), and (2) a hydrogen-ion-consuming oxidation to sulfur (V) (S2O6(2-)). In such a way, both the H+-producing and H+-consuming composite processes required for a pH oscillator take place in parallel in a reaction between two reagents in this system. A simple reaction scheme, consisting of the protonation equilibria of SO3(2-) and HSO3-, the oxidation of HSO3- and H2SO3 by BrO3- to SO4(2-), and the oxidation of H2SO3 to S2O6(2-) has successfully been used to simulate the observed dynamical behavior. Simulation with this simple scheme shows that oscillations can be calculated even if only about 1% of sulfur (IV) is oxidized to S2O6(2-) along with the main product SO4(2-). Agreement between calculated and measured dynamical behavior is found to be quite good. Increasing temperature decreases both the period length of oscillations in a CSTR and the Landolt time measured in a closed reactor. No temperature compensation of the oscillatory frequency is found in this reaction.
在连续流动搅拌槽式反应器的水溶液中,在不存在任何额外氧化或还原试剂的情况下,已测量到溴酸根离子氧化硫(IV)物种期间的大幅度pH振荡。在这个简单化学反应中,振荡的来源是溴酸根离子对硫(IV)的双向氧化:(1)产生氢离子的自加速氧化为硫(VI)(SO4(2-)),以及(2)消耗氢离子的氧化为硫(V)(S2O6(2-))。通过这种方式,pH振荡器所需的产生H⁺和消耗H⁺的复合过程在该系统中两种试剂之间的反应中并行发生。一个简单的反应方案,包括SO3(2-)和HSO3-的质子化平衡、BrO3-将HSO3-和H2SO3氧化为SO4(2-)以及H2SO3氧化为S2O6(2-),已成功用于模拟观察到的动力学行为。用这个简单方案进行的模拟表明,即使只有约1%的硫(IV)与主要产物SO4(2-)一起被氧化为S2O6(2-),也可以计算出振荡。计算得到的和测量到的动力学行为之间的一致性相当好。升高温度会缩短连续搅拌槽式反应器中振荡的周期长度以及在密闭反应器中测量的兰多尔特时间。在该反应中未发现振荡频率的温度补偿。