Bai Jun-Ping, Navaratnam Dhasakumar, Samaranayake Haresha, Santos-Sacchi Joseph
Neurology and Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
Neurosci Lett. 2006 Sep 1;404(3):270-5. doi: 10.1016/j.neulet.2006.05.062. Epub 2006 Jul 12.
Prestin, the transmembrane motor protein is a novel protein underlying the motility of the outer hair cells. Nonlinear capacitance (NLC) or gating charge current, which can be observed in both auditory and transfected non-auditory cells, is the electrical signature of prestin's electromechanical activity. To test the functional role of the C-terminus of prestin, several charged residue clusters were reversed en-block by site-directed mutagenesis. They are D/E to K at 516, 518, 522, 524, 527, 528 and 531 (cluster a); R/K to D at 571, 572, 573, 576, 577 and 580 (cluster b); R to D at 571; and E/D to K at 608, 609, 610, 611, 612 and 613 (cluster c). These constructs were transfected into Chinese hamster ovary cells (CHO) and NLC recordings were performed to evaluate the effects of these charge substitutions. All of the mutants showed NLC. Charge cluster a reversal significantly reduced the maximum charge movement (Qmax). All but one mutation (charge cluster c reversal) shifted V(h), indicative of the operating voltage range, in the depolarizing direction. None of the mutations affected unitary charge movement (z). These data suggest that the C-terminus of prestin lies outside the membrane voltage field, and may play an important role in controlling the operating voltage range through control of the protein's conformational energy profile via allosteric means.
预应力蛋白是一种跨膜运动蛋白,是外毛细胞运动的一种新型蛋白。在听觉细胞和转染的非听觉细胞中都能观察到的非线性电容(NLC)或门控电荷电流,是预应力蛋白机电活性的电信号特征。为了测试预应力蛋白C末端的功能作用,通过定点诱变将几个带电残基簇进行了整体反转。它们分别是516、518、522、524、527、528和531位的天冬氨酸/谷氨酸(D/E)突变为赖氨酸(K)(簇a);571、572、573、576、577和580位的精氨酸(R)/赖氨酸(K)突变为天冬氨酸(D)(簇b);571位的精氨酸(R)突变为天冬氨酸(D);以及608、609、610、611、612和613位的谷氨酸(E)/天冬氨酸(D)突变为赖氨酸(K)(簇c)。将这些构建体转染到中国仓鼠卵巢细胞(CHO)中,并进行NLC记录以评估这些电荷替代的影响。所有突变体均显示出NLC。电荷簇a的反转显著降低了最大电荷移动(Qmax)。除了一个突变(电荷簇c的反转)外,所有突变都使表示工作电压范围的V(h)向去极化方向移动。没有一个突变影响单位电荷移动(z)。这些数据表明,预应力蛋白的C末端位于膜电压场之外,并且可能通过变构方式控制蛋白质的构象能量分布,从而在控制工作电压范围方面发挥重要作用。