Suppr超能文献

用于测量蛋白质 - DNA 相互作用的DNA微阵列技术。

DNA microarray technologies for measuring protein-DNA interactions.

作者信息

Bulyk Martha L

机构信息

Division of Genetics, Department of Medicine, Harvard/MIT Division of Health Sciences and Technology (HST), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Curr Opin Biotechnol. 2006 Aug;17(4):422-30. doi: 10.1016/j.copbio.2006.06.015. Epub 2006 Jul 12.

Abstract

DNA-binding proteins have key roles in many cellular processes, including transcriptional regulation and replication. Microarray-based technologies permit the high-throughput identification of binding sites and enable the functional roles of these binding proteins to be elucidated. In particular, microarray readout either of chromatin immunoprecipitated DNA-bound proteins (ChIP-chip) or of DNA adenine methyltransferase fusion proteins (DamID) enables the identification of in vivo genomic target sites of proteins. A complementary approach to analyse the in vitro binding of proteins directly to double-stranded DNA microarrays (protein binding microarrays; PBMs), permits rapid characterization of their DNA binding site sequence specificities. Recent advances in DNA microarray synthesis technologies have facilitated the definition of DNA-binding sites at much higher resolution and coverage, and advances in these and emerging technologies will further increase the efficiencies of these exciting new approaches.

摘要

DNA结合蛋白在许多细胞过程中发挥关键作用,包括转录调控和复制。基于微阵列的技术允许高通量鉴定结合位点,并能够阐明这些结合蛋白的功能作用。特别是,对染色质免疫沉淀的DNA结合蛋白(ChIP芯片)或DNA腺嘌呤甲基转移酶融合蛋白(DamID)进行微阵列读出,能够鉴定蛋白质在体内的基因组靶位点。一种用于直接分析蛋白质与双链DNA微阵列体外结合的互补方法(蛋白质结合微阵列;PBM),可以快速表征其DNA结合位点序列特异性。DNA微阵列合成技术的最新进展促进了以更高分辨率和覆盖率定义DNA结合位点,这些技术以及新兴技术的进步将进一步提高这些令人兴奋的新方法的效率。

相似文献

1
DNA microarray technologies for measuring protein-DNA interactions.
Curr Opin Biotechnol. 2006 Aug;17(4):422-30. doi: 10.1016/j.copbio.2006.06.015. Epub 2006 Jul 12.
2
Protein binding microarrays for the characterization of DNA-protein interactions.
Adv Biochem Eng Biotechnol. 2007;104:65-85. doi: 10.1007/10_025.
5
DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase.
Methods Enzymol. 2006;410:342-59. doi: 10.1016/S0076-6879(06)10016-6.
7
Methyl Adenine Identification (MadID): High-Resolution Detection of Protein-DNA Interactions.
Methods Mol Biol. 2020;2175:123-138. doi: 10.1007/978-1-0716-0763-3_10.
9
Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data.
BMC Bioinformatics. 2010 Apr 17;11:194. doi: 10.1186/1471-2105-11-194.
10
Systematic characterization of protein-DNA interactions.
Cell Mol Life Sci. 2011 May;68(10):1657-68. doi: 10.1007/s00018-010-0617-y. Epub 2011 Jan 5.

引用本文的文献

1
Genomic SELEX Screening of Regulatory Targets of Transcription Factors.
Methods Mol Biol. 2024;2819:77-102. doi: 10.1007/978-1-0716-3930-6_5.
2
Biomimetic mimicry of formaldehyde-induced DNA-protein crosslinks in the confined space of a metal-organic framework.
Chem Sci. 2022 Mar 21;13(17):4813-4820. doi: 10.1039/d2sc00188h. eCollection 2022 May 4.
3
Single-Target Regulators Constitute the Minority Group of Transcription Factors in K-12.
Front Microbiol. 2021 Jun 18;12:697803. doi: 10.3389/fmicb.2021.697803. eCollection 2021.
4
From biophysics to 'omics and systems biology.
Eur Biophys J. 2019 Jul;48(5):413-424. doi: 10.1007/s00249-019-01366-3. Epub 2019 Apr 9.
5
Single-target regulators form a minor group of transcription factors in Escherichia coli K-12.
Nucleic Acids Res. 2018 May 4;46(8):3921-3936. doi: 10.1093/nar/gky138.
6
Chromatin Immunoprecipitation in Human and Yeast Cells.
Methods Mol Biol. 2018;1767:257-269. doi: 10.1007/978-1-4939-7774-1_14.
7
Scoring Targets of Transcription in Bacteria Rather than Focusing on Individual Binding Sites.
Front Microbiol. 2017 Nov 22;8:2314. doi: 10.3389/fmicb.2017.02314. eCollection 2017.
8
Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.
Nucleic Acids Res. 2016 Mar 18;44(5):2058-74. doi: 10.1093/nar/gkw051. Epub 2016 Feb 3.
9
De novo ChIP-seq analysis.
Genome Biol. 2015 Sep 23;16(1):205. doi: 10.1186/s13059-015-0756-4.
10
BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.
Biomater Sci. 2014 Apr 1;2(4):436-471. doi: 10.1039/C3BM60181A.

本文引用的文献

2
A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell. 2006 Apr 21;125(2):315-26. doi: 10.1016/j.cell.2006.02.041.
3
Chromatin profiling, DamID and the emerging landscape of gene expression.
Curr Opin Genet Dev. 2006 Apr;16(2):157-64. doi: 10.1016/j.gde.2006.02.008. Epub 2006 Feb 28.
4
Defining the sequence-recognition profile of DNA-binding molecules.
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):867-72. doi: 10.1073/pnas.0509843102. Epub 2006 Jan 17.
6
Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin.
Cell. 2005 Oct 21;123(2):233-48. doi: 10.1016/j.cell.2005.10.002.
7
Genome-scale profiling of histone H3.3 replacement patterns.
Nat Genet. 2005 Oct;37(10):1090-7. doi: 10.1038/ng1637. Epub 2005 Sep 11.
8
Core transcriptional regulatory circuitry in human embryonic stem cells.
Cell. 2005 Sep 23;122(6):947-56. doi: 10.1016/j.cell.2005.08.020.
9
Genome-wide map of nucleosome acetylation and methylation in yeast.
Cell. 2005 Aug 26;122(4):517-27. doi: 10.1016/j.cell.2005.06.026.
10
Single-nucleosome mapping of histone modifications in S. cerevisiae.
PLoS Biol. 2005 Oct;3(10):e328. doi: 10.1371/journal.pbio.0030328. Epub 2005 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验