Suppr超能文献

阐明p53-Mdm2系统对DNA损伤修复的数字控制机制:单细胞数据分析与整体建模

Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling.

作者信息

Ogunnaike Babatunde A

机构信息

University of Delaware, Department of Chemical Engineering, Newark, DE 19716, USA.

出版信息

J R Soc Interface. 2006 Feb 22;3(6):175-84. doi: 10.1098/rsif.2005.0077.

Abstract

Recent experimental evidence about DNA damage response using the p53-Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage--consistent with 'analogue' control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase--consistent with 'digital' control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53-Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well.

摘要

最近利用p53-Mdm2系统进行的关于DNA损伤反应的实验证据,引发了一些有关所采用控制机制的基本问题。响应DNA损伤时,一组细胞的p53表达呈现出阻尼振荡,其振幅随DNA损伤增加而增大——这与“模拟”控制一致。然而,最近的实验结果表明,单细胞反应是p53中的一系列离散脉冲;随着DNA损伤增加,脉冲的高度和持续时间均不变,但脉冲平均数增加——这与“数字”控制一致。在此我们提出一个系统工程模型,利用已发表的数据来阐明这一机制,并解决单细胞水平的数字行为如何表现为模拟整体行为这一困境。首先,我们构建了一个p53-Mdm2系统的动态模型,该模型对应激信号产生非振荡反应。其次,我们构建了一个细胞群体中脉冲分布概率模型,并将二者与最简单的数字控制算法相结合,以展示随着DNA损伤增加振幅增长的振荡反应是如何从单细胞行为产生的,其中每个单脉冲反应都与DNA损伤程度无关。对假设控制机制的随机模拟能非常好地重现实验观察结果。

相似文献

2
A plausible model for the digital response of p53 to DNA damage.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14266-71. doi: 10.1073/pnas.0501352102. Epub 2005 Sep 26.
3
Modeling the heterogeneity of p53 dynamics in DNA damage response.
J Bioinform Comput Biol. 2016 Feb;14(1):1650001. doi: 10.1142/S0219720016500013. Epub 2015 Sep 16.
4
Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
Biosystems. 2013 Dec;114(3):191-205. doi: 10.1016/j.biosystems.2013.08.004. Epub 2013 Sep 5.
5
Mathematical modelling of p53 basal dynamics and DNA damage response.
Math Biosci. 2015 Jan;259:27-42. doi: 10.1016/j.mbs.2014.10.010. Epub 2014 Nov 26.
6
Oscillations by the p53-Mdm2 feedback loop.
Adv Exp Med Biol. 2008;641:28-38. doi: 10.1007/978-0-387-09794-7_2.
7
8
Dynamics of the p53-Mdm2 feedback loop in individual cells.
Nat Genet. 2004 Feb;36(2):147-50. doi: 10.1038/ng1293. Epub 2004 Jan 18.
9
From structure to dynamics: frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches.
J Theor Biol. 2010 Jun 21;264(4):1177-89. doi: 10.1016/j.jtbi.2010.03.031. Epub 2010 Mar 25.
10
Biological mechanisms revealed by a mathematical model for p53-Mdm2 core regulation.
IET Syst Biol. 2009 Jul;3(4):229-38. doi: 10.1049/iet-syb.2008.0152.

引用本文的文献

1
Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey.
Int J Mol Sci. 2021 Sep 30;22(19):10590. doi: 10.3390/ijms221910590.
2
Mathematical modeling to distinguish cell cycle arrest and cell killing in chemotherapeutic concentration response curves.
J Pharmacokinet Pharmacodyn. 2011 Jun;38(3):385-403. doi: 10.1007/s10928-011-9199-z. Epub 2011 Apr 27.
3
Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges.
J R Soc Interface. 2010 Jul 6;7(48):989-1013. doi: 10.1098/rsif.2009.0517. Epub 2010 Feb 10.
4
Introduction: statistical mechanics of molecular and cellular biological systems.
J R Soc Interface. 2006 Feb 22;3(6):123-4. doi: 10.1098/rsif.2005.0107.

本文引用的文献

1
Cell biology. Guiding ATM to broken DNA.
Science. 2005 Apr 22;308(5721):510-1. doi: 10.1126/science.1112069.
2
ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.
Science. 2005 Apr 22;308(5721):551-4. doi: 10.1126/science.1108297. Epub 2005 Mar 24.
3
Targeting the checkpoint kinases: chemosensitization versus chemoprotection.
Nat Rev Cancer. 2004 Mar;4(3):216-25. doi: 10.1038/nrc1296.
4
Dynamics of the p53-Mdm2 feedback loop in individual cells.
Nat Genet. 2004 Feb;36(2):147-50. doi: 10.1038/ng1293. Epub 2004 Jan 18.
5
Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays.
Curr Biol. 2003 Aug 19;13(16):1409-13. doi: 10.1016/s0960-9822(03)00494-9.
6
The p53-Mdm2 module and the ubiquitin system.
Semin Cancer Biol. 2003 Feb;13(1):49-58. doi: 10.1016/s1044-579x(02)00099-8.
7
The Mre11 complex: at the crossroads of dna repair and checkpoint signalling.
Nat Rev Mol Cell Biol. 2002 May;3(5):317-27. doi: 10.1038/nrm805.
8
Surfing the p53 network.
Nature. 2000 Nov 16;408(6810):307-10. doi: 10.1038/35042675.
9
Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study.
Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11250-5. doi: 10.1073/pnas.210171597.
10
MDM2--master regulator of the p53 tumor suppressor protein.
Gene. 2000 Jan 25;242(1-2):15-29. doi: 10.1016/s0378-1119(99)00487-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验