Ogunnaike Babatunde A
University of Delaware, Department of Chemical Engineering, Newark, DE 19716, USA.
J R Soc Interface. 2006 Feb 22;3(6):175-84. doi: 10.1098/rsif.2005.0077.
Recent experimental evidence about DNA damage response using the p53-Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage--consistent with 'analogue' control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase--consistent with 'digital' control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53-Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well.
最近利用p53-Mdm2系统进行的关于DNA损伤反应的实验证据,引发了一些有关所采用控制机制的基本问题。响应DNA损伤时,一组细胞的p53表达呈现出阻尼振荡,其振幅随DNA损伤增加而增大——这与“模拟”控制一致。然而,最近的实验结果表明,单细胞反应是p53中的一系列离散脉冲;随着DNA损伤增加,脉冲的高度和持续时间均不变,但脉冲平均数增加——这与“数字”控制一致。在此我们提出一个系统工程模型,利用已发表的数据来阐明这一机制,并解决单细胞水平的数字行为如何表现为模拟整体行为这一困境。首先,我们构建了一个p53-Mdm2系统的动态模型,该模型对应激信号产生非振荡反应。其次,我们构建了一个细胞群体中脉冲分布概率模型,并将二者与最简单的数字控制算法相结合,以展示随着DNA损伤增加振幅增长的振荡反应是如何从单细胞行为产生的,其中每个单脉冲反应都与DNA损伤程度无关。对假设控制机制的随机模拟能非常好地重现实验观察结果。