Winer Ira S, Bommer Guido T, Gonik Nathan, Fearon Eric R
Cell and Molecular Biology Graduate Program, Division of Molecular Medicine and Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA.
J Biol Chem. 2006 Sep 8;281(36):26181-7. doi: 10.1074/jbc.M604217200. Epub 2006 Jul 18.
Wnt signaling regulates cell fate determination, proliferation, and survival, among other processes. Certain Wnt ligands stabilize the beta-catenin protein, leading to the ability of beta-catenin to activate T cell factor-regulated genes. In the absence of Wnts, beta-catenin is phosphorylated at defined serine and threonine residues in its amino (N) terminus. The phosphorylated beta-catenin is recognized by a beta-transducin repeat-containing protein (betaTrCP) and associated ubiquitin ligase components. The serine/threonine residues and betaTrCP-binding site in the N-terminal region of beta-catenin constitute a key regulatory motif targeted by somatic mutations in human cancers, resulting in constitutive stabilization of the mutant beta-catenin proteins. Structural studies have implicated beta-catenin lysine 19 as the major target for betaTrCP-dependent ubiquitination, but Lys-19 mutations in cancer have not been reported. We studied the consequences of single amino acid substitutions of the only 2 lysine residues in the N-terminal 130 amino acids of beta-catenin. Mutation of Lys-19 minimally affected beta-catenin levels and functional activity, and mutation of Lys-49 led to reduced beta-catenin levels and function. In contrast, beta-catenin proteins with substitutions at both Lys-19 and Lys-49 positions were present at elevated levels and had the ability to potently activate T cell factor-dependent transcription and promote neoplastic transformation. We furthermore demonstrate that the K19/K49 double mutant forms of beta-catenin are stabilized as a result of reduced betaTrCP-dependent ubiquitination. Our findings suggest that Lys-19 is a primary in vivo site of betaTrCP-dependent ubiquitination and Lys-49 may be a secondary or cryptic site. Moreover, our results inform understanding of why single amino acid substitutions at lysine 19 or 49 have not been reported in human cancer.
Wnt信号通路调控细胞命运决定、增殖和存活等多种过程。某些Wnt配体可稳定β-连环蛋白,使其能够激活T细胞因子调控的基因。在没有Wnt的情况下,β-连环蛋白在其氨基(N)末端特定的丝氨酸和苏氨酸残基处被磷酸化。磷酸化的β-连环蛋白被含β-转导蛋白重复序列的蛋白(βTrCP)及相关泛素连接酶成分识别。β-连环蛋白N端区域的丝氨酸/苏氨酸残基和βTrCP结合位点构成了人类癌症中体细胞突变的关键调控基序,导致突变的β-连环蛋白持续稳定。结构研究表明β-连环蛋白赖氨酸19是βTrCP依赖的泛素化的主要靶点,但尚未有癌症中赖氨酸19突变的报道。我们研究了β-连环蛋白N端130个氨基酸中仅有的2个赖氨酸残基的单氨基酸替代的后果。赖氨酸19的突变对β-连环蛋白水平和功能活性影响最小,而赖氨酸49的突变导致β-连环蛋白水平和功能降低。相反,在赖氨酸19和赖氨酸49位置都有替代的β-连环蛋白水平升高,并且能够有效激活T细胞因子依赖的转录并促进肿瘤转化。我们还证明,β-连环蛋白的K19/K49双突变体形式因βTrCP依赖的泛素化减少而稳定。我们的研究结果表明,赖氨酸19是βTrCP依赖的泛素化的主要体内位点,赖氨酸49可能是次要或隐匿位点。此外,我们的结果有助于理解为什么在人类癌症中尚未报道赖氨酸19或49的单氨基酸替代。