Suppr超能文献

索赔数据是否足够准确,以识别适合绩效评估或质量改进的患者?以糖尿病、心脏病和抑郁症为例。

Are claims data accurate enough to identify patients for performance measures or quality improvement? The case of diabetes, heart disease, and depression.

作者信息

Solberg Leif I, Engebretson Karen I, Sperl-Hillen Joann M, Hroscikoski Mary C, O'Connor Patrick J

机构信息

HealthPartners Research Foundation, Minneapolis, Minnesota 55440, USA.

出版信息

Am J Med Qual. 2006 Jul-Aug;21(4):238-45. doi: 10.1177/1062860606288243.

Abstract

The objective of this study was to demonstrate a method to accurately identify patients with specific conditions from claims data for care improvement or performance measurement. In an iterative process of trial case definitions followed by review of repeated random samples of 10 to 20 cases for diabetes, heart disease, or newly treated depression, a final identification algorithm was created from claims files of health plan members. A final sample was used to calculate the positive predictive value (PPV). Each condition had unacceptably low PPVs (0.20, 0.60, and 0.65) when cases were identified on the basis of only 1 International Classification of Diseases, ninth revision, code per year. Requiring 2 outpatient codes or 1 inpatient code within 12 months (plus consideration of medication data for diabetes and extra criteria for depression) resulted in PPVs of 0.97, 0.95, and 0.95. This approach is feasible and necessary for those wanting to use administrative data for case identification for performance measurement or quality improvement.

摘要

本研究的目的是演示一种从理赔数据中准确识别患有特定疾病患者的方法,以改善医疗护理或进行绩效评估。在一个反复试验病例定义的迭代过程中,随后对糖尿病、心脏病或新治疗的抑郁症的10至20个病例的重复随机样本进行审查,从健康计划成员的理赔文件中创建了最终识别算法。使用最终样本计算阳性预测值(PPV)。当仅根据每年1个《国际疾病分类》第九版代码来识别病例时,每种疾病的PPV都低得令人无法接受(分别为0.20、0.60和0.65)。要求在12个月内有2个门诊代码或1个住院代码(加上考虑糖尿病的用药数据和抑郁症的额外标准),PPV分别为0.97、0.95和0.95。对于那些希望使用行政数据进行病例识别以进行绩效评估或质量改进的人来说,这种方法是可行且必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验