Claiser N, Souhassou M, Lecomte C, Gillon B, Carbonera C, Caneschi A, Dei A, Gatteschi D, Bencini A, Pontillon Y, Lelièvre-Berna E
Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, UMR CNRS 7036, Université Henri Poincaré-Nancy I, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France.
J Phys Chem B. 2005 Feb 24;109(7):2723-32. doi: 10.1021/jp0467907.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.
已对Y-半醌配合物Y(HBPz3)2(DTBSQ)进行了高分辨率X射线衍射和极化中子衍射实验,以确定顺磁基态S = (1/2)中的电荷和自旋密度。这些联合研究的目的是为同构的Gd(HBPz3)2(DTBSQ)配合物中半醌自由基与稀土离子之间的反铁磁耦合机制带来新的见解。106 K时的实验电荷密度给出了有关Y3+离子与半醌配体之间键合的详细信息;钇原子的拓扑电荷表明在配合物中约有1.5个电子从自由基转移到Y3+离子,这与密度泛函理论(DFT)计算结果一致。电子密度变形图显示出分辨良好的氧孤对,其中一个瓣朝向钇原子极化。在9.5 T的外加磁场下,于1.9 K测定诱导自旋密度,从而可以观察到自由基在整个分子中的离域磁轨道。自旋主要分布在羰基环的氧原子[O1(0.12(1) μB),O2(0.11(1) μB)]和碳原子[C21(0.24(1) μB),C22(0.20(1) μB),C24(0.16(1) μB),C25(0.12(1) μB)]上。在钇位点观察到0.08(2) μB的显著自旋离域,证明在稀土位点可能与自由基磁轨道发生直接重叠并导致反铁磁耦合。DFT计算结果与实验电荷密度结果在定量上吻合良好,但低估了氧向钇和羰基环碳原子的自旋离域。