Sweatman M B, Quirke N
Department of Chemistry, Imperial College, South Kensington, London, SW7 2AY, UK.
J Phys Chem B. 2005 May 26;109(20):10389-94. doi: 10.1021/jp045272t.
We use a fast density functional theory (a "slab-DFT") and the polydisperse independent ideal slit-pore model to predict gas mixture adsorption in active carbons. The DFT is parametrized by fitting to pure gas isotherms generated by Monte Carlo simulation of adsorption in model graphitic slit-pores. Accurate gas molecular models are used in our Monte Carlo simulations with gas-surface interactions calibrated to a high surface area carbon, rather than a low surface area carbon as in all previous work of this type, as described in part 1 of this work. We predict the adsorption of binary mixtures of carbon dioxide, methane, and nitrogen on two active carbons up to about 30 bar at near-ambient temperatures. We compare two sets of results; one set obtained using only the pure carbon dioxide adsorption isotherm as input to our pore characterization process, and the other obtained using both pure gas isotherms as input. We also compare these results with ideal adsorbed solution theory (IAST). We find that our methods are at least as accurate as IAST for these relatively simple gas mixtures and have the advantage of much greater versatility. We expect similar results for other active carbons and further performance gains for less ideal mixtures.
我们使用快速密度泛函理论(“平板DFT”)和多分散独立理想狭缝孔模型来预测活性炭中气体混合物的吸附情况。DFT通过拟合在模型石墨狭缝孔中吸附的蒙特卡罗模拟生成的纯气体等温线来进行参数化。在我们的蒙特卡罗模拟中使用了精确的气体分子模型,气体与表面的相互作用根据高比表面积碳进行校准,而不是像此前这类工作中那样根据低比表面积碳校准,如本工作第1部分所述。我们预测了二氧化碳、甲烷和氮气的二元混合物在两种活性炭上接近环境温度下高达约30巴的吸附情况。我们比较了两组结果;一组仅使用纯二氧化碳吸附等温线作为孔表征过程的输入得到,另一组使用两种纯气体等温线作为输入得到。我们还将这些结果与理想吸附溶液理论(IAST)进行了比较。我们发现,对于这些相对简单的气体混合物,我们的方法至少与IAST一样准确,并且具有通用性更强的优势。我们预计其他活性炭也会有类似结果,对于不太理想的混合物,性能会有进一步提升。