Belzunegui J P, Sanz J, Guil José M
Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Campus Universitario de Cantoblanco, 28049 Madrid, Spain.
J Phys Chem B. 2005 Oct 20;109(41):19390-6. doi: 10.1021/jp052766x.
1H NMR spectra corresponding to H2 adsorption on high-surface Rh/CeO2 catalysts (S(BET) approximately 55 m2/g) are formed by two lines, attributed to hydrogen adsorbed on ceria (resonance line A) and rhodium-metal particles (upfield-shifted line B). The evolution of 1H NMR spectra as a function of temperature, time, and type of reduction (static or dynamic) allows the study of the progressive establishment of the strong metal-support interaction (SMSI) in Rh/CeO2 catalysts. As the reduction progresses, the mean adsorption heat and the amount of hydrogen adsorbed on the metal, deduced from volumetry, NMR, and calorimetry techniques, decrease considerably. As a consequence of the decrease in metal activity, the amount of hydrogen transferred to the support CeO2 is also reduced (spill-over processes). Outgassing of samples at 773 K eliminates hydrogen species retained at the metal-support surface, and oxidation treatments at 473 and 673 K eliminate the electronic effect and physical blocking of metal particles. The oxidation at 673 K recuperates the total adsorption capacity of metal particles. On the basis of these treatments, the contribution of different processes to the SMSI effect is analyzed. Electronic perturbation of rhodium particles is higher when reductions are performed in dynamic conditions; however, the importance of physical blocking of metal particles increases in static reductions. High reducibility of ceria strengthens electronic effects in Rh/CeO2 compared to those observed in Rh/TiO2 catalysts.
对应于氢气在高比表面积Rh/CeO₂催化剂(S(BET)约为55 m²/g)上吸附的¹H NMR谱由两条谱线组成,分别归属于吸附在二氧化铈上的氢(共振线A)和铑金属颗粒(高场位移线B)。¹H NMR谱随温度、时间和还原类型(静态或动态)的变化,使得对Rh/CeO₂催化剂中强金属-载体相互作用(SMSI)的逐步建立进行研究成为可能。随着还原过程的进行,通过容量法、NMR和量热法技术推导出的平均吸附热以及吸附在金属上的氢气量显著降低。由于金属活性的降低,转移到载体CeO₂上的氢气量也减少(溢流过程)。在773 K下对样品进行脱气可消除保留在金属-载体表面的氢物种,在473 K和673 K下进行氧化处理可消除金属颗粒的电子效应和物理阻塞。在673 K下的氧化恢复了金属颗粒的总吸附容量。基于这些处理,分析了不同过程对SMSI效应的贡献。在动态条件下进行还原时,铑颗粒的电子扰动更高;然而,在静态还原中金属颗粒物理阻塞的重要性增加。与在Rh/TiO₂催化剂中观察到的情况相比,二氧化铈的高还原性增强了Rh/CeO₂中的电子效应。