Geskin V M, Grozema F C, Siebbeles L D A, Beljonne D, Brédas J L, Cornil J
Service de Chimie des Matériaux Nouveaux, Centre de Recherche en Electronique et Photonique Moléculaires, Université de Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium.
J Phys Chem B. 2005 Nov 3;109(43):20237-43. doi: 10.1021/jp0519417.
We report on a quantum-chemical study of the electronic and optical properties of unsubstituted oligo(phenylene vinylene) (OPV) radical cations. Our goal is to distinguish the impact of the choice of molecular geometry from the impact of the choice of quantum-chemical method, on the calculated optical transition energies. The geometry modifications upon ionization of the OPV chains are found to depend critically on the theoretical formalism: Hartree-Fock (HF) geometry optimizations lead to self-localization of the charged defects while pure density functional theory (DFT) results in a complete delocalization of the geometric modifications over the whole conjugated backbone. The electronic structure and vertical transition energy associated with the lowest excited state of the radical cations have been calculated at the post-Hartree-Fock level within a configuration interaction (HF-CI) scheme and using the time-dependent DFT (TD-DFT) formalism for different radical cation geometries. Interestingly, the changes in the calculated optical properties obtained when using different geometric structures are less important within a given method than the differences between methods for a given structure. The optical excitation is localized with HF-CI and delocalized with TD-DFT, almost irrespective of the molecular geometry; as a result, HF-CI excitation energies tend to saturate as the chain length increases, in contrast to the results from TD-DFT.
我们报道了关于未取代的聚对苯撑乙烯(OPV)自由基阳离子的电子和光学性质的量子化学研究。我们的目标是区分分子几何结构选择和量子化学方法选择对计算得到的光学跃迁能量的影响。发现OPV链电离时的几何结构变化严重依赖于理论形式:哈特里 - 福克(HF)几何优化导致带电缺陷的自局域化,而纯密度泛函理论(DFT)则使几何结构变化在整个共轭主链上完全离域。在配置相互作用(HF - CI)方案内的后哈特里 - 福克水平下,并使用含时密度泛函理论(TD - DFT)形式,针对不同的自由基阳离子几何结构计算了与自由基阳离子最低激发态相关的电子结构和垂直跃迁能量。有趣的是,在给定方法中使用不同几何结构时计算得到的光学性质变化,比给定结构的不同方法之间的差异要小。几乎与分子几何结构无关,光学激发在HF - CI中是局域化的,而在TD - DFT中是离域化的;结果,与TD - DFT的结果相反,随着链长增加,HF - CI激发能量趋于饱和。