Suppr超能文献

使用非线性有限元模型深入了解人晶状体调节幅度随年龄的下降情况。

Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model.

作者信息

Schachar R A, Abolmaali A, Le T

机构信息

Department of Physics, University of Texas at Arlington, Arlington, TX, USA.

出版信息

Br J Ophthalmol. 2006 Oct;90(10):1304-9. doi: 10.1136/bjo.2006.100347. Epub 2006 Jul 19.

Abstract

AIM

To understand the effect of the geometric and material properties of the lens on the age-related decline in accommodative amplitude.

METHODS

Using a non-linear finite-element model, a parametric assessment was carried out to determine the effect of stiffness of the cortex, nucleus, capsule and zonules, and that of thickness of the capsule and lens, on the change in central optical power (COP) associated with zonular traction. Convergence was required for all solutions.

RESULTS

Increasing either capsular stiffness or capsular thickness was associated with an increase in the change in COP for any specific amount of zonular traction. Weakening the attachment between the capsule and its underlying cortex increased the magnitude of the change in COP. When the hardness of the total lens stroma, cortex or nucleus was increased, there was a reduction in the amount of change in COP associated with a fixed amount of zonular traction.

CONCLUSIONS

Increasing lens hardness reduces accommodative amplitude; however, as hardness of the lens does not occur until after the fourth decade of life, the age-related decline in accommodative amplitude must be due to another mechanism. One explanation is a progressive decline in the magnitude of the maximum force exerted by the zonules with ageing.

摘要

目的

了解晶状体的几何和材料特性对与年龄相关的调节幅度下降的影响。

方法

使用非线性有限元模型进行参数评估,以确定皮质、核、囊膜和悬韧带的硬度以及囊膜和晶状体厚度对与悬韧带牵引相关的中央屈光力(COP)变化的影响。所有解都需要收敛。

结果

对于任何特定量的悬韧带牵引,增加囊膜硬度或囊膜厚度都与COP变化增加相关。削弱囊膜与其下方皮质之间的附着会增加COP变化的幅度。当整个晶状体基质、皮质或核的硬度增加时,与固定量的悬韧带牵引相关的COP变化量会减少。

结论

增加晶状体硬度会降低调节幅度;然而,由于晶状体硬度直到生命的第四个十年之后才会出现,与年龄相关的调节幅度下降必定是由于另一种机制。一种解释是随着年龄增长悬韧带施加的最大力的大小逐渐下降。

相似文献

1
Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model.
Br J Ophthalmol. 2006 Oct;90(10):1304-9. doi: 10.1136/bjo.2006.100347. Epub 2006 Jul 19.
3
Numerical modelling of the accommodating lens.
Vision Res. 2002 Aug;42(18):2235-251. doi: 10.1016/s0042-6989(02)00094-9.
4
On the relationship between lens stiffness and accommodative amplitude.
Exp Eye Res. 2007 Nov;85(5):602-7. doi: 10.1016/j.exer.2007.07.012. Epub 2007 Jul 25.
6
Analysis of human crystalline lens accommodation.
J Biomech. 2006;39(4):672-80. doi: 10.1016/j.jbiomech.2005.01.017.
7
Sensitivity study of human crystalline lens accommodation.
Comput Methods Programs Biomed. 2007 Jan;85(1):77-90. doi: 10.1016/j.cmpb.2006.08.005. Epub 2006 Sep 26.
9
Changes in the internal structure of the human crystalline lens with age and accommodation.
Vision Res. 2003 Oct;43(22):2363-75. doi: 10.1016/s0042-6989(03)00428-0.

引用本文的文献

1
The Effect of the Zonular Fiber Angle of Insertion on Accommodation.
Vision (Basel). 2024 Jul 23;8(3):45. doi: 10.3390/vision8030045.
3
Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens.
Biomed Opt Express. 2011 Aug 1;2(8):2144-59. doi: 10.1364/BOE.2.002144. Epub 2011 Jul 5.
4
Optical power of the isolated human crystalline lens.
Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2541-8. doi: 10.1167/iovs.07-1385. Epub 2008 Mar 3.
6
The effect of human in vivo accommodation on crystalline lens stability.
Br J Ophthalmol. 2007 Jun;91(6):790-3. doi: 10.1136/bjo.2006.110791. Epub 2007 Jan 10.

本文引用的文献

1
The mechanism of accommodation and presbyopia.
Int Ophthalmol Clin. 2006 Summer;46(3):39-61. doi: 10.1097/00004397-200604630-00006.
2
The Nepal Longitudinal Study: biometric characteristics of developing eyes.
Optom Vis Sci. 2006 May;83(5):274-80. doi: 10.1097/01.opx.0000215251.27409.16.
3
Analysis of crystalline lens position.
J Cataract Refract Surg. 2006 Apr;32(4):599-603. doi: 10.1016/j.jcrs.2006.01.016.
4
Finite element model of cornea deformation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):591-8. doi: 10.1007/11566489_73.
5
FEM simulation of the eye structure with bio-heat analysis.
Comput Methods Programs Biomed. 2006 Jun;82(3):268-76. doi: 10.1016/j.cmpb.2006.04.001. Epub 2006 May 6.
6
Biomechanical model of corneal transplantation.
J Refract Surg. 2006 Mar;22(3):293-302. doi: 10.3928/1081-597X-20060301-16.
8
Computer modelling study of the mechanism of optic nerve injury in blunt trauma.
Br J Ophthalmol. 2006 Jun;90(6):778-83. doi: 10.1136/bjo.2005.086538. Epub 2006 Jan 18.
9
A finite-element analysis model of orbital biomechanics.
Vision Res. 2006 May;46(11):1724-31. doi: 10.1016/j.visres.2005.11.022. Epub 2006 Jan 18.
10
Factors influencing optic nerve head biomechanics.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99. doi: 10.1167/iovs.05-0541.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验