Xu Hongliang, Hauptman Herbert A
Hauptman-Woodward Medical Research Institute and Department of Structural Biology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA.
Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):897-900. doi: 10.1107/S0907444906012704. Epub 2006 Jul 18.
Macromolecular crystal structure determination has typically been a two-step process. When diffraction data from multiple chemically isomorphous or anomalously scattering crystals are available, the positions of heavy atoms from amplitude differences arising from native-derivative crystal pairs or an anomalously scattering crystal are first located and phasing of the whole protein structure is then completed using the heavy-atom substructure as a bootstrap. Shake-and-Bake, a direct-methods-based dual-space refinement procedure, provides heavy-atom substructure solutions by finding the constrained global minimum of a probabilistically defined minimal function. This minimal function relies on probabilistic estimates of the cosines of the structure invariants. A novel statistically defined minimal function that utilizes the statistical properties of the structure invariants has recently been proposed and tested. Applications of the statistical Shake-and-Bake procedure show that statistical direct methods provide a simple, reliable and efficient method of heavy-atom substructure determination.
大分子晶体结构测定通常是一个两步过程。当有来自多个化学同晶型或异常散射晶体的衍射数据时,首先根据天然衍生物晶体对或异常散射晶体产生的振幅差异确定重原子的位置,然后以重原子子结构作为引导完成整个蛋白质结构的相位确定。“摇晃烘焙法”是一种基于直接法的双空间精修程序,通过找到概率定义的最小函数的受约束全局最小值来提供重原子子结构解决方案。这个最小函数依赖于结构不变量余弦的概率估计。最近提出并测试了一种利用结构不变量统计特性的新型统计定义最小函数。统计“摇晃烘焙法”程序的应用表明,统计直接法为重原子子结构测定提供了一种简单、可靠且高效的方法。