Seubert John M, Sinal Christopher J, Graves Joan, DeGraff Laura M, Bradbury J Alyce, Lee Craig R, Goralski Kerry, Carey Michelle A, Luria Ayala, Newman John W, Hammock Bruce D, Falck John R, Roberts Holly, Rockman Howard A, Murphy Elizabeth, Zeldin Darryl C
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
Circ Res. 2006 Aug 18;99(4):442-50. doi: 10.1161/01.RES.0000237390.92932.37. Epub 2006 Jul 20.
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable levels of sEH mRNA and protein and cannot convert EETs to DHETs. sEH null mice have normal heart anatomy and basal contractile function, but have higher fatty acid epoxide:diol ratios in plasma and cardiomyocyte cell culture media compared with wild type (WT). sEH null hearts have improved recovery of left ventricular developed pressure (LVDP) and less infarction compared with WT hearts after 20 minutes ischemia. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 to 100 nmol/L) before ischemia abolishes this cardioprotective phenotype. Inhibitor studies demonstrate that perfusion with phosphatidylinositol-3 kinase (PI3K) inhibitors wortmannin (200 nmol/L) or LY294002 (5 micromol/L), the ATP-sensitive K+ channel (K(ATP)) inhibitor glibenclamide (1 micromol/L), the mitochondrial K(ATP) (mitoK(ATP)) inhibitor 5-hydroxydecanoate (100 to 200 micromol/L), or the Ca2+-sensitive K+ channel (K(Ca)) inhibitor paxilline (10 micromol/L) abolishes the cardioprotection in sEH null hearts. Consistent with increased activation of the PI3K cascade, sEH null mice exhibit increased cardiac expression of glycogen synthase kinase-3beta (GSK-3beta) phospho-protein after ischemia. Together, these data suggest that targeted disruption of sEH increases the availability of cardioprotective EETs that work by activating PI3K signaling pathways and K+ channels.
细胞色素P450环氧合酶将花生四烯酸代谢为环氧二十碳三烯酸(EETs),后者可被可溶性环氧化物水解酶(Ephx2,sEH)转化为二羟基二十碳三烯酸(DHETs)。为研究sEH在心脏中的功能作用,对Ephx2基因靶向缺失的小鼠进行了研究。sEH基因敲除小鼠的心脏中检测不到sEH mRNA和蛋白,且无法将EETs转化为DHETs。与野生型(WT)相比,sEH基因敲除小鼠的心脏解剖结构和基础收缩功能正常,但血浆和心肌细胞培养基中的脂肪酸环氧化物:二醇比值更高。与WT心脏相比,sEH基因敲除小鼠的心脏在缺血20分钟后左心室舒张末压(LVDP)的恢复更好,梗死面积更小。在缺血前用假定的EET受体拮抗剂14,15-环氧二十碳-5(Z)-烯酸(10至100 nmol/L)灌注可消除这种心脏保护表型。抑制剂研究表明,用磷脂酰肌醇-3激酶(PI3K)抑制剂渥曼青霉素(200 nmol/L)或LY294002(5 μmol/L)、ATP敏感性钾通道(K(ATP))抑制剂格列本脲(1 μmol/L)、线粒体K(ATP)(mitoK(ATP))抑制剂5-羟基癸酸(100至200 μmol/L)或钙敏感性钾通道(K(Ca))抑制剂帕吉林(10 μmol/L)灌注可消除sEH基因敲除心脏的心脏保护作用。与PI3K级联反应的激活增加一致,sEH基因敲除小鼠在缺血后心脏中糖原合酶激酶-3β(GSK-3β)磷酸化蛋白的表达增加。总之,这些数据表明,sEH的靶向缺失增加了具有心脏保护作用的EETs的可用性,这些EETs通过激活PI3K信号通路和钾通道发挥作用。