Suppr超能文献

核因子κB通路在果蝇肠道免疫中对杀菌性氧化剂的重要补充作用。

An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity.

作者信息

Ryu Ji-Hwan, Ha Eun-Mi, Oh Chun-Taek, Seol Jae-Hong, Brey Paul T, Jin Ingnyol, Lee Dong Gun, Kim Jaesang, Lee Daekee, Lee Won-Jae

机构信息

Division of Molecular Life Science and National Creative Research Initiative Center for Symbiosystem, Ewha Woman's University, Seoul, South Korea.

出版信息

EMBO J. 2006 Aug 9;25(15):3693-701. doi: 10.1038/sj.emboj.7601233. Epub 2006 Jul 20.

Abstract

In the Drosophila gut, reactive oxygen species (ROS)-dependent immunity is critical to host survival. This is in contrast to the NF-kappaB pathway whose physiological function in the microbe-laden epithelia has yet to be convincingly demonstrated despite playing a critical role during systemic infections. We used a novel in vivo approach to reveal the physiological role of gut NF-kappaB/antimicrobial peptide (AMP) system, which has been 'masked' in the presence of the dominant intestinal ROS-dependent immunity. When fed with ROS-resistant microbes, NF-kappaB pathway mutant flies, but not wild-type flies, become highly susceptible to gut infection. This high lethality can be significantly reduced by either re-introducing Relish expression to Relish mutants or by constitutively expressing a single AMP to the NF-kappaB pathway mutants in the intestine. These results imply that the local 'NF-kappaB/AMP' system acts as an essential 'fail-safe' system, complementary to the ROS-dependent gut immunity, during gut infection with ROS-resistant pathogens. This system provides the Drosophila gut immunity the versatility necessary to manage sporadic invasion of virulent pathogens that somehow counteract or evade the ROS-dependent immunity.

摘要

在果蝇肠道中,活性氧(ROS)依赖性免疫对宿主生存至关重要。这与NF-κB途径形成对比,尽管NF-κB途径在全身感染期间发挥关键作用,但其在充满微生物的上皮细胞中的生理功能尚未得到令人信服的证明。我们采用了一种新的体内方法来揭示肠道NF-κB/抗菌肽(AMP)系统的生理作用,该系统在占主导地位的肠道ROS依赖性免疫存在时被“掩盖”了。当喂食抗ROS微生物时,NF-κB途径突变果蝇而非野生型果蝇变得极易受到肠道感染。通过将Relish表达重新引入Relish突变体或在肠道中向NF-κB途径突变体组成型表达单一AMP,这种高致死率可显著降低。这些结果表明,在感染抗ROS病原体期间,局部“NF-κB/AMP”系统作为一种重要的“故障安全”系统,与ROS依赖性肠道免疫互补。该系统为果蝇肠道免疫提供了应对毒性病原体零星入侵所需的多功能性,这些病原体以某种方式对抗或逃避ROS依赖性免疫。

相似文献

1
An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity.
EMBO J. 2006 Aug 9;25(15):3693-701. doi: 10.1038/sj.emboj.7601233. Epub 2006 Jul 20.
2
An in vitro study of NF-κB factors cooperatively in regulation of Drosophila melanogaster antimicrobial peptide genes.
Dev Comp Immunol. 2019 Jun;95:50-58. doi: 10.1016/j.dci.2019.01.017. Epub 2019 Feb 6.
4
Innate immunity and gut-microbe mutualism in Drosophila.
Dev Comp Immunol. 2010 Apr;34(4):369-76. doi: 10.1016/j.dci.2009.11.010. Epub 2009 Dec 10.
5
NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration.
Cell Rep. 2017 Apr 25;19(4):836-848. doi: 10.1016/j.celrep.2017.04.007.
6
Drosophila H2Av negatively regulates the activity of the IMD pathway via facilitating Relish SUMOylation.
PLoS Genet. 2021 Aug 9;17(8):e1009718. doi: 10.1371/journal.pgen.1009718. eCollection 2021 Aug.
7
Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity.
Dev Cell. 2009 Mar;16(3):386-97. doi: 10.1016/j.devcel.2008.12.015.
8
An antioxidant system required for host protection against gut infection in Drosophila.
Dev Cell. 2005 Jan;8(1):125-32. doi: 10.1016/j.devcel.2004.11.007.
10
The SUMO-targeted ubiquitin ligase, Dgrn, is essential for Drosophila innate immunity.
Int J Dev Biol. 2017;61(3-4-5):319-327. doi: 10.1387/ijdb.160250ao.

引用本文的文献

1
symbionts in infection: when a friend becomes an enemy.
Infect Immun. 2025 May 13;93(5):e0051124. doi: 10.1128/iai.00511-24. Epub 2025 Apr 2.
4
Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review.
Int J Mol Sci. 2024 Mar 29;25(7):3835. doi: 10.3390/ijms25073835.
6
Ingested soil bacteria breach gut epithelia and prime systemic immunity in an insect.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2315540121. doi: 10.1073/pnas.2315540121. Epub 2024 Mar 4.
7
Sting mediates infection by reducing accumulation of reactive oxygen species.
Infect Immun. 2024 Mar 12;92(3):e0056022. doi: 10.1128/iai.00560-22. Epub 2024 Feb 16.
9
Resistance to host antimicrobial peptides mediates resilience of gut commensals during infection and aging in .
Proc Natl Acad Sci U S A. 2023 Sep 5;120(36):e2305649120. doi: 10.1073/pnas.2305649120. Epub 2023 Aug 28.

本文引用的文献

1
A direct role for dual oxidase in Drosophila gut immunity.
Science. 2005 Nov 4;310(5749):847-50. doi: 10.1126/science.1117311.
2
Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila.
Cell. 2005 Oct 21;123(2):335-46. doi: 10.1016/j.cell.2005.08.034.
3
Recognition of antimicrobial peptides by a bacterial sensor kinase.
Cell. 2005 Aug 12;122(3):461-72. doi: 10.1016/j.cell.2005.05.030.
4
Immunity, inflammation, and allergy in the gut.
Science. 2005 Mar 25;307(5717):1920-5. doi: 10.1126/science.1106442.
5
The Paneth cell and the innate immune response.
Curr Opin Gastroenterol. 2004 Nov;20(6):572-80. doi: 10.1097/00001574-200411000-00012.
6
An antioxidant system required for host protection against gut infection in Drosophila.
Dev Cell. 2005 Jan;8(1):125-32. doi: 10.1016/j.devcel.2004.11.007.
7
War and peace at mucosal surfaces.
Nat Rev Immunol. 2004 Dec;4(12):953-64. doi: 10.1038/nri1499.
8
Secreted Bacterial Effectors and Host-Produced Eiger/TNF Drive Death in aSalmonella-Infected Fruit Fly.
PLoS Biol. 2004 Dec;2(12):e418. doi: 10.1371/journal.pbio.0020418. Epub 2004 Nov 30.
9
Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity.
EMBO J. 2004 Nov 24;23(23):4690-700. doi: 10.1038/sj.emboj.7600466. Epub 2004 Nov 11.
10
Antimicrobial reactive oxygen and nitrogen species: concepts and controversies.
Nat Rev Microbiol. 2004 Oct;2(10):820-32. doi: 10.1038/nrmicro1004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验