Costandi Peter N, Frank Lawrence R, McCulloch Andrew D, Omens Jeffrey H
Dept. of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0613, USA.
Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2971-9. doi: 10.1152/ajpheart.00571.2006. Epub 2006 Jul 21.
Although the physiological states of hypertrophic remodeling and congestive heart failure have been intensively studied, less is known about the transition from one to the other. The use of genetically engineered murine models of heart failure has proven valuable in characterizing the progression of remodeling and its ultimate decompensation to failure. Mice deficient in the cytoskeletal muscle LIM-only protein (MLP) are known to present with a clinical picture of dilated cardiomyopathy and transition to failure as adults. Longitudinal high-field magnetic resonance (MR) cardiac imaging provided a time course of remodeling where an improvement in ejection fraction and stroke volume (15- vs. 31-wk MLP(-/-) mice; P < 0.0001) was temporally concurrent with an abrupt phase of end-diastolic chamber dilatation. Hemodynamic analysis conducted throughout that dilatation phase showed improved ratio of maximum first derivative of pressure to end-diastolic pressure (dP/dt(max)/EDP; 15- vs. 31-wk MLP(-/-) mice; P < 0.0005), ratio of minimum first derivative of pressure to EDP (dP/dt(min)/EDP; 15- vs. 31-wk MLP(-/-) mice; P < 0.003), and developed pressure (15- vs. 31-wk MLP(-/-) mice; P < 0.0001) levels in the MLP(-/-) mice. Computational modeling techniques were used to estimate the EDP volume relationship, revealing that although MLP hearts possess a stiffer stress-strain relation, chamber compliance increased as a function of dilatation. This detailed physiological characterization during a phase of rapid anatomical remodeling suggests that systolic function in the MLP(-/-) mice may temporarily improve as a result of alterations in chamber compliance, which are mediated by dilatation. In turn, a balance may exist between exploiting the Frank-Starling mechanism and altering chamber compliance that maintains function in the absence of hypertrophic growth. Though initially compensatory, this process may exhaust itself and consequently transition to a maladaptive course.
尽管肥厚性重塑和充血性心力衰竭的生理状态已得到深入研究,但对于从一种状态转变为另一种状态的了解却较少。事实证明,使用基因工程小鼠心力衰竭模型对于表征重塑的进展及其最终失代偿为心力衰竭具有重要价值。已知缺乏细胞骨架仅含肌肉LIM蛋白(MLP)的小鼠成年后会出现扩张型心肌病的临床表现并转变为心力衰竭。纵向高场磁共振(MR)心脏成像提供了重塑的时间进程,其中射血分数和每搏输出量有所改善(15周龄与31周龄的MLP(-/-)小鼠;P < 0.0001),这与舒张末期心室扩张的突然阶段在时间上是同时发生的。在整个扩张阶段进行的血流动力学分析显示,MLP(-/-)小鼠的最大压力一阶导数与舒张末期压力之比(dP/dt(max)/EDP;15周龄与31周龄的MLP(-/-)小鼠;P < 0.0005)、最小压力一阶导数与EDP之比(dP/dt(min)/EDP;15周龄与31周龄的MLP(-/-)小鼠;P < 0.003)以及心室内压力(15周龄与31周龄的MLP(-/-)小鼠;P < 0.0001)水平均有所改善。使用计算建模技术来估计EDP与容积的关系,结果表明,尽管MLP心脏具有更硬的应力-应变关系,但心室顺应性会随着扩张而增加。在快速解剖重塑阶段的这种详细生理特征表明,MLP(-/-)小鼠的收缩功能可能会由于心室顺应性的改变而暂时改善,而这种改变是由扩张介导的。反过来,在利用Frank-Starling机制和改变心室顺应性之间可能存在一种平衡,这种平衡在没有肥厚性生长的情况下维持功能。尽管最初具有代偿作用,但这个过程可能会自我耗尽,从而转变为适应不良的过程。