Patterson James E, Dlott Dana D
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Box 01-6 CLSL, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
J Phys Chem B. 2005 Mar 24;109(11):5045-54. doi: 10.1021/jp045075u.
Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.
进行了自组装单分子层(SAMs)的模拟,以解释通过振动和频产生(SFG)光谱探测的超快约1 GPa(体积压缩量ΔV约为0.1)平面冲击压缩动力学的实验测量结果(拉古切夫,A. S.;帕特森,J. E.;黄,W.;德洛特,D. D.《物理化学杂志B》2005年,109卷,XXXX)。所研究的SAMs是在Au(111)和Ag(111)衬底上的十八烷硫醇(ODT)和十五烷硫醇(PDT),以及在Au(111)上的苄基硫醇(BMT)。在烷烃SAMs中,SFG对末端甲基的瞬时取向敏感;在BMT中,它对苯基取向敏感。烷烃SAMs的计算结构与实验结果吻合良好。在烷烃中,除了ODT/Au中两个最上层二面角处的单重和双重gauche缺陷具有相似能量外,gauche缺陷的能量随着甲基平面以下数量和深度的增加而增加。SAM晶格的等温单轴压缩模拟表明,在PDT/Au、ODT/Ag和PDT/Ag中,链和甲基倾斜占主导,而在ODT/Au中,单重和双重gauche缺陷的形成占主导。显示ODT/Au和PDT/Au的瞬态SFG信号损失的时间分辨冲击数据通过计算末端基团取向作为ΔV的函数及其对SFG超极化率的贡献来拟合。PDT/Au的高弹性响应源于冲击产生的甲基和链倾斜。ODT/Au的粘弹性响应源于单重和双重gauche缺陷的冲击产生。等温压缩模拟有助于解释和拟合冲击光谱随时间变化,但通常低估了SFG信号损失的幅度,因为它们没有包括高应变率动力学以及冲击前沿和表面不规则性的影响。