Suppr超能文献

源自双能肝祖细胞的基因定义肝癌的产生与分析。

Generation and analysis of genetically defined liver carcinomas derived from bipotential liver progenitors.

作者信息

Zender L, Xue W, Cordón-Cardo C, Hannon G J, Lucito R, Powers S, Flemming P, Spector M S, Lowe S W

机构信息

Cold Spring Harbor Laboratory, New York 11724, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2005;70:251-61. doi: 10.1101/sqb.2005.70.059.

Abstract

Hepatocellular carcinoma is a chemoresistant cancer and a leading cause of cancer mortality; however, the molecular mechanisms responsible for the aggressive nature of this disease are poorly understood. In this study, we developed a new liver cancer mouse model that is based on the ex vivo genetic manipulation of embryonic liver progenitor cells (hepatoblasts). After retroviral gene transfer of oncogenes or short hairpin RNAs targeting tumor suppressor genes, genetically altered liver progenitor cells are seeded into the liver of otherwise normal recipient mice. We show that histopathology of the engineered liver carcinomas reveals features of the human disease. Furthermore, representational oligonucleotide microarray analysis (ROMA) of murine liver tumors initiated by two defined genetic hits revealed spontaneously acquired genetic alterations that are characteristic for human hepatocellular carcinoma. This model provides a powerful platform for applications like cancer gene discovery or high-throughput preclinical drug testing.

摘要

肝细胞癌是一种化疗耐药性癌症,也是癌症死亡的主要原因;然而,导致这种疾病侵袭性的分子机制却知之甚少。在本研究中,我们基于胚胎肝祖细胞(成肝细胞)的体外基因操作开发了一种新的肝癌小鼠模型。在将癌基因或靶向肿瘤抑制基因的短发夹RNA进行逆转录病毒基因转移后,将基因改变的肝祖细胞接种到原本正常的受体小鼠肝脏中。我们发现,工程化肝癌的组织病理学显示出人类疾病的特征。此外,对由两种明确的基因打击引发的小鼠肝肿瘤进行代表性寡核苷酸微阵列分析(ROMA),揭示了人类肝细胞癌特有的自发获得性基因改变。该模型为癌症基因发现或高通量临床前药物测试等应用提供了一个强大的平台。

相似文献

1
Generation and analysis of genetically defined liver carcinomas derived from bipotential liver progenitors.
Cold Spring Harb Symp Quant Biol. 2005;70:251-61. doi: 10.1101/sqb.2005.70.059.
2
Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment.
J Clin Invest. 2015 Oct 1;125(10):3891-903. doi: 10.1172/JCI77995. Epub 2015 Sep 8.
5
Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma.
J Hepatol. 2015 Nov;63(5):1164-72. doi: 10.1016/j.jhep.2015.06.009. Epub 2015 Jun 18.
7
Expression profiling and identification of novel genes in hepatocellular carcinomas.
Oncogene. 2001 May 10;20(21):2704-12. doi: 10.1038/sj.onc.1204391.
8
Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury.
Int J Exp Pathol. 2006 Oct;87(5):343-59. doi: 10.1111/j.1365-2613.2006.00485.x.
10
Transcriptional profiling of bipotential embryonic liver cells to identify liver progenitor cell surface markers.
Stem Cells. 2007 Oct;25(10):2476-87. doi: 10.1634/stemcells.2007-0101. Epub 2007 Jul 19.

引用本文的文献

1
Precision models in hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 2025 Mar;22(3):191-205. doi: 10.1038/s41575-024-01024-w. Epub 2024 Dec 11.
2
Cancer tissue of origin constrains the growth and metabolism of metastases.
Nat Metab. 2024 Sep;6(9):1668-1681. doi: 10.1038/s42255-024-01105-9. Epub 2024 Aug 19.
4
Myeloid-intrinsic cell cycle-related kinase drives immunosuppression to promote tumorigenesis.
iScience. 2023 Aug 12;26(10):107626. doi: 10.1016/j.isci.2023.107626. eCollection 2023 Oct 20.
6
MLL3 regulates the tumor suppressor locus in liver cancer.
Elife. 2023 Jun 1;12:e80854. doi: 10.7554/eLife.80854.
7
Stimulating Antitumoral Immunity by Percutaneous Cryoablation and Combination Immunoadjuvant Therapy in a Murine Model of Hepatocellular Carcinoma.
J Vasc Interv Radiol. 2023 Sep;34(9):1516-1527.e6. doi: 10.1016/j.jvir.2023.05.008. Epub 2023 May 11.
9
Melanoma differentiation associated gene-9/syndecan binding protein promotes hepatocellular carcinoma.
Hepatology. 2023 Dec 1;78(6):1727-1741. doi: 10.1002/hep.32797. Epub 2023 Nov 17.
10
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice.
Cancers (Basel). 2021 May 11;13(10):2292. doi: 10.3390/cancers13102292.

本文引用的文献

1
Liver cancer: the role of stem cells.
Cell Prolif. 2005 Dec;38(6):407-21. doi: 10.1111/j.1365-2184.2005.00354.x.
2
Second-generation shRNA libraries covering the mouse and human genomes.
Nat Genet. 2005 Nov;37(11):1281-8. doi: 10.1038/ng1650. Epub 2005 Oct 2.
3
Probing tumor phenotypes using stable and regulated synthetic microRNA precursors.
Nat Genet. 2005 Nov;37(11):1289-95. doi: 10.1038/ng1651. Epub 2005 Oct 2.
4
Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants.
Nature. 2005 Aug 11;436(7052):807-11. doi: 10.1038/nature03845.
5
The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma.
Mol Cell Biol. 2005 Feb;25(4):1228-37. doi: 10.1128/MCB.25.4.1228-1237.2005.
6
Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.
Carcinogenesis. 2005 Feb;26(2):495-502. doi: 10.1093/carcin/bgh321. Epub 2004 Oct 28.
7
MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.
Nature. 2004 Oct 28;431(7012):1112-7. doi: 10.1038/nature03043. Epub 2004 Oct 10.
8
Self-renewal and solid tumor stem cells.
Oncogene. 2004 Sep 20;23(43):7274-82. doi: 10.1038/sj.onc.1207947.
9
Unlocking the potential of the human genome with RNA interference.
Nature. 2004 Sep 16;431(7006):371-8. doi: 10.1038/nature02870.
10
Stem cells and prenatal origin of breast cancer.
Cancer Causes Control. 2004 Jun;15(5):517-30. doi: 10.1023/B:CACO.0000036450.06092.ce.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验