Marmé Nicole, Friedrich Achim, Müller Matthias, Nolte Oliver, Wolfrum Jürgen, Hoheisel Jörg D, Sauer Markus, Knemeyer Jens-Peter
Institute of Physical Chemistry, University of Heidelberg Im Neuenheimer Feld, 229, 69120 Heidelberg, Germany.
Nucleic Acids Res. 2006 Jul 26;34(13):e90. doi: 10.1093/nar/gkl495.
We demonstrate the specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis applying fluorescently labeled DNA-hairpin structures (smart probes) in combination with single-molecule fluorescence spectroscopy. Smart probes are singly labeled hairpin-shaped oligonucleotides bearing a fluorescent dye at the 5' end that is quenched by guanosine residues in the complementary stem. Upon hybridization to target sequences, a conformational change occurs, reflected in a strong increase in fluorescence intensity. An excess of unlabeled ('cold') oligonucleotides was used to prevent the formation of secondary structures in the target sequence and thus facilitates hybridization of smart probes. Applying standard ensemble fluorescence spectroscopy we demonstrate the identification of SNPs in PCR amplicons of mycobacterial rpoB gene fragments with a detection sensitivity of 10(-8) M. To increase the detection sensitivity, confocal fluorescence microscopy was used to observe fluorescence bursts of individual smart probes freely diffusing through the detection volume. By measuring burst size, burst duration and fluorescence lifetime for each fluorescence burst the discrimination accuracy between closed and open (hybridized) smart probes could be substantially increased. The developed technique enables the identification of SNPs in 10(-11) M solutions of PCR amplicons from M.tuberculosis in only 100 s.
我们展示了应用荧光标记的DNA发夹结构(智能探针)结合单分子荧光光谱法对导致结核分枝杆菌利福平耐药性的单核苷酸多态性(SNP)进行特异性鉴定。智能探针是单标记的发夹形寡核苷酸,在5'端带有荧光染料,该染料被互补茎中的鸟苷残基淬灭。与靶序列杂交后,会发生构象变化,表现为荧光强度大幅增加。使用过量的未标记(“冷”)寡核苷酸来防止靶序列中形成二级结构,从而促进智能探针的杂交。应用标准的整体荧光光谱法,我们证明了在分枝杆菌rpoB基因片段的PCR扩增子中鉴定SNP,检测灵敏度为10^(-8) M。为了提高检测灵敏度,使用共聚焦荧光显微镜观察单个智能探针在检测体积中自由扩散时的荧光猝发。通过测量每个荧光猝发的猝发大小、猝发持续时间和荧光寿命,可以大幅提高封闭和开放(杂交)智能探针之间的区分准确性。所开发的技术能够在仅100秒内鉴定来自结核分枝杆菌的PCR扩增子10^(-11) M溶液中的SNP。