Suppr超能文献

嗅球肾小球中的自发电位:近球细胞的主导作用。

Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.

作者信息

Karnup S V, Hayar A, Shipley M T, Kurnikova M G

机构信息

University of Maryland Medical School, Department of Physiology, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA.

出版信息

Neuroscience. 2006 Sep 29;142(1):203-21. doi: 10.1016/j.neuroscience.2006.05.068. Epub 2006 Jul 28.

Abstract

Field potentials recorded in the olfactory bulb glomerular layer (GL) are thought to result mainly from activation of mitral and tufted cells. The contribution of juxtaglomerular cells (JG) is unknown. We tested the hypothesis that JG are the main driving force to novel spontaneous glomerular layer field potentials (sGLFPs), which were recorded in rat olfactory bulb slices maintained in an interface chamber. We found that sGLFPs have comparable magnitudes, durations and frequencies both in standard horizontal slices, where all layers with all cell types were present, and in isolated GL slices, where only JG cells were preserved. Hence, the impact of mitral and deep/medium tufted cells to sGLFPs turned out to be minor. Therefore, we propose that the main generators of sGLFPs are JG neurons. We further explored the mechanism of generation of sGLFPs using a neuronal ensemble model comprising all types of cells associated with a single glomerulus. Random orientation and homogenous distribution of dendrites in the glomerular neuropil along with surrounding shell of cell bodies of JG neurons resulted in substantial spatial restriction of the generated field potential. The model predicts that less than 20% of sGLFP can spread from one glomerulus to an adjacent one. The contribution of JG cells to the total field in the center of the glomerulus is estimated as approximately 50% ( approximately 34% periglomerular and approximately 16% external tufted cells), whereas deep/medium tufted cells provide approximately 39% and mitral cells only approximately 10%. Occasionally, some sGLFPs recorded in adjacent or remote glomeruli were cross-correlated, suggesting involvement of interglomerular communication in information coding. These results demonstrate a leading role of JG cells in activation of the main olfactory bulb (MOB) functional modules. Finally, we hypothesize that the GL is not a set of independent modules, but it represents a subsystem in the MOB network, which can perform initial processing of odors.

摘要

在嗅球肾小球层(GL)记录到的场电位被认为主要源于二尖瓣细胞和簇状细胞的激活。近肾小球细胞(JG)的作用尚不清楚。我们测试了这样一个假设,即JG是新型自发性肾小球层场电位(sGLFPs)的主要驱动力,这些电位是在置于界面室的大鼠嗅球切片中记录到的。我们发现,在包含所有细胞类型的所有层的标准水平切片以及仅保留JG细胞的分离GL切片中,sGLFPs具有相当的幅度、持续时间和频率。因此,二尖瓣细胞和深层/中层簇状细胞对sGLFPs的影响很小。所以,我们提出sGLFPs的主要产生者是JG神经元。我们进一步使用包含与单个肾小球相关的所有细胞类型的神经元群体模型来探索sGLFPs的产生机制。肾小球神经毡中树突的随机取向和均匀分布以及JG神经元细胞体的周围壳层导致所产生的场电位在空间上受到很大限制。该模型预测,不到20%的sGLFP可以从一个肾小球扩散到相邻的肾小球。JG细胞对肾小球中心总场的贡献估计约为50%(约34%为球周细胞,约16%为外侧簇状细胞),而深层/中层簇状细胞贡献约39%,二尖瓣细胞仅贡献约10%。偶尔,在相邻或远处肾小球记录到的一些sGLFPs存在交叉相关性,这表明肾小球间通讯参与了信息编码。这些结果证明了JG细胞在激活主嗅球(MOB)功能模块中的主导作用。最后,我们假设GL不是一组独立的模块,而是MOB网络中的一个子系统,它可以对气味进行初步处理。

相似文献

1
Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
Neuroscience. 2006 Sep 29;142(1):203-21. doi: 10.1016/j.neuroscience.2006.05.068. Epub 2006 Jul 28.
3
Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
J Neurophysiol. 2005 Mar;93(3):1285-94. doi: 10.1152/jn.00807.2004. Epub 2004 Oct 13.
5
Detecting activity in olfactory bulb glomeruli with astrocyte recording.
J Neurosci. 2005 Mar 16;25(11):2917-24. doi: 10.1523/JNEUROSCI.5042-04.2005.
8
Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.
J Neurosci. 2015 Mar 11;35(10):4319-31. doi: 10.1523/JNEUROSCI.2181-14.2015.
9
Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
Nat Neurosci. 2005 Mar;8(3):354-64. doi: 10.1038/nn1403. Epub 2005 Feb 6.

引用本文的文献

1
Discrete field potentials produced by coherent activation of spinal dorsal horn neurons.
Exp Brain Res. 2022 Feb;240(2):665-686. doi: 10.1007/s00221-021-06286-3. Epub 2022 Jan 10.
2
Properties of an optogenetic model for olfactory stimulation.
J Physiol. 2016 Jul 1;594(13):3501-16. doi: 10.1113/JP271853. Epub 2016 Mar 17.
3
Astroglial Connexin 43 Hemichannels Modulate Olfactory Bulb Slow Oscillations.
J Neurosci. 2015 Nov 18;35(46):15339-52. doi: 10.1523/JNEUROSCI.0861-15.2015.
4
Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow.
J Physiol. 2015 May 15;593(10):2343-63. doi: 10.1113/jphysiol.2014.288134. Epub 2015 Mar 17.
5
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.
J Neurophysiol. 2012 Aug 1;108(3):782-93. doi: 10.1152/jn.00119.2012. Epub 2012 May 16.
6
Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation.
Neuroscience. 2011 Sep 29;192:231-46. doi: 10.1016/j.neuroscience.2011.06.016. Epub 2011 Jun 12.
7
Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb.
J Neurosci. 2009 Oct 28;29(43):13454-64. doi: 10.1523/JNEUROSCI.2368-09.2009.
9
Neurogliogenesis in the mature olfactory system: a possible protective role against infection and toxic dust.
Brain Res Rev. 2009 Mar;59(2):374-87. doi: 10.1016/j.brainresrev.2008.10.004. Epub 2008 Nov 10.
10
Reconstructing the Population Activity of Olfactory Output Neurons that Innervate Identifiable Processing Units.
Front Neural Circuits. 2008 Jun 12;2:1. doi: 10.3389/neuro.04.001.2008. eCollection 2008.

本文引用的文献

1
Action potential of the motoneurons of the hypoglossus nucleus.
J Cell Comp Physiol. 1947 Jun;29(3):207-87. doi: 10.1002/jcp.1030290303.
2
Olfactory bulb external tufted cells are synchronized by multiple intraglomerular mechanisms.
J Neurosci. 2005 Sep 7;25(36):8197-208. doi: 10.1523/JNEUROSCI.2374-05.2005.
3
Properties of external plexiform layer interneurons in mouse olfactory bulb slices.
Neuroscience. 2005;133(3):819-29. doi: 10.1016/j.neuroscience.2005.03.008.
4
Theta oscillations and sensorimotor performance.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3863-8. doi: 10.1073/pnas.0407920102. Epub 2005 Feb 28.
5
The role of distal dendritic gap junctions in synchronization of mitral cell axonal output.
J Comput Neurosci. 2005 Mar-Apr;18(2):151-61. doi: 10.1007/s10827-005-6556-1.
6
Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
Nat Neurosci. 2005 Mar;8(3):354-64. doi: 10.1038/nn1403. Epub 2005 Feb 6.
7
High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
J Neurosci. 2005 Jan 26;25(4):792-8. doi: 10.1523/JNEUROSCI.4673-04.2005.
8
External tufted cells: a major excitatory element that coordinates glomerular activity.
J Neurosci. 2004 Jul 28;24(30):6676-85. doi: 10.1523/JNEUROSCI.1367-04.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验