Ishijima Muneaki, Ezura Yoichi, Tsuji Kunikazu, Rittling Susan R, Kurosawa Hisashi, Denhardt David T, Emi Mitsuru, Nifuji Akira, Noda Masaki
Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 3-10, Kanda-Surugadai 2-Chome, Chiyoda-Ku, Tokyo 101-0062, Japan.
Exp Cell Res. 2006 Oct 1;312(16):3075-83. doi: 10.1016/j.yexcr.2006.06.003. Epub 2006 Jun 7.
Osteoporosis due to unloading-induced bone loss is a critical issue in the modern aging society. Although the mechanisms underlying this phenomenon are largely unknown, osteopontin (OPN) is one of the critical mediators required for unloading-induced bone loss [M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, and M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin, J Exp Med, 193 (2001) 399-404]. To clarify the molecular bases for OPN actions, we carried out microarray analyses on the genes expressed in the femoral bone marrow cells in wild type and OPN-/- mice. The removal of the mechanical load induced bone loss in wild type, but not in OPN-/- mice, as previously reported. Expression analysis of 9586 cDNAs on a microarray system revealed that OPN deficiency blocked tail-suspension-induced expression of ten genes (group A). This observation was confirmed based on semi-quantitative RT-PCR analyses. On the other hand, expression of four genes (group B) was not altered by tail suspension in wild type but was enhanced in OPN-deficient mice. NF-kappaB p105 subunit gene (Nfkb1) was found in group A and Bax in group B. p53 gene expression was upregulated by tail suspension in wild type mice, but it was no longer observed in OPN-/- mice. These data indicate that OPN acts to mediate mechanical stress signaling upstream to the genes encoding apoptosis-related molecules, and its action is associated with alteration of the genes.
因废用性骨质流失导致的骨质疏松症是现代老龄化社会中的一个关键问题。尽管这一现象背后的机制在很大程度上尚不清楚,但骨桥蛋白(OPN)是废用性骨质流失所需的关键介质之一[M. Ishijima、S.R. Rittling、T. Yamashita、K. Tsuji、H. Kurosawa、A. Nifuji、D.T. Denhardt和M. Noda,《实验医学杂志》,193(2001年)399 - 404:在没有骨桥蛋白的情况下,响应机械应力降低时破骨细胞骨吸收的增强和成骨细胞骨形成的抑制不会发生]。为了阐明OPN作用的分子基础,我们对野生型和OPN基因敲除小鼠股骨骨髓细胞中表达的基因进行了微阵列分析。如先前报道,去除机械负荷会导致野生型小鼠骨质流失,但不会导致OPN基因敲除小鼠骨质流失。在微阵列系统上对9586个cDNA进行的表达分析表明,OPN缺乏会阻止尾悬吊诱导的10个基因(A组)的表达。基于半定量RT - PCR分析证实了这一观察结果。另一方面,4个基因(B组)的表达在野生型小鼠中不受尾悬吊影响,但在OPN缺乏的小鼠中增强。A组中发现了NF - κB p105亚基基因(Nfkb1),B组中发现了Bax。野生型小鼠中尾悬吊会上调p53基因表达,但在OPN基因敲除小鼠中不再观察到这种情况。这些数据表明,OPN在编码凋亡相关分子的基因上游介导机械应力信号,其作用与基因改变有关。