Mazumdar Jolly, H Wilson Emma, Masek Kate, A Hunter Christopher, Striepen Boris
Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D. W. Brooks Drive, Athens, 30602, USA.
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13192-7. doi: 10.1073/pnas.0603391103. Epub 2006 Aug 18.
Apicomplexan parasites are the cause of numerous important human diseases including malaria and AIDS-associated opportunistic infections. Drug treatment for these diseases is not satisfactory and is threatened by resistance. The discovery of the apicoplast, a chloroplast-like organelle, presents drug targets unique to these parasites. The apicoplast-localized fatty acid synthesis (FAS II) pathway, a metabolic process fundamentally divergent from the analogous FAS I pathway in humans, represents one such target. However, the specific biological roles of apicoplast FAS II remain elusive. Furthermore, the parasite genome encodes additional and potentially redundant pathways for the synthesis of fatty acids. We have constructed a conditional null mutant of acyl carrier protein, a central component of the FAS II pathway in Toxoplasma gondii. Loss of FAS II severely compromises parasite growth in culture. We show FAS II to be required for the activation of pyruvate dehydrogenase, an important source of the metabolic precursor acetyl-CoA. Interestingly, acyl carrier protein knockout also leads to defects in apicoplast biogenesis and a consequent loss of the organelle. Most importantly, in vivo knockdown of apicoplast FAS II in a mouse model results in cure from a lethal challenge infection. In conclusion, our study demonstrates a direct link between apicoplast FAS II functions and parasite survival and pathogenesis. Our genetic model also offers a platform to dissect the integration of the apicoplast into parasite metabolism, especially its postulated interaction with the mitochondrion.
顶复门寄生虫是包括疟疾和艾滋病相关机会性感染在内的众多重要人类疾病的病因。针对这些疾病的药物治疗并不令人满意,且受到耐药性的威胁。质体的发现,一种类似叶绿体的细胞器,为这些寄生虫提供了独特的药物靶点。定位于质体的脂肪酸合成(FAS II)途径,是一个与人类类似的FAS I途径根本不同的代谢过程,就是这样一个靶点。然而,质体FAS II的具体生物学作用仍然难以捉摸。此外,寄生虫基因组编码了额外的、可能冗余的脂肪酸合成途径。我们构建了酰基载体蛋白的条件性无效突变体,酰基载体蛋白是弓形虫FAS II途径的核心组成部分。FAS II的缺失严重损害了寄生虫在培养中的生长。我们发现FAS II是激活丙酮酸脱氢酶所必需的,丙酮酸脱氢酶是代谢前体乙酰辅酶A的重要来源。有趣的是,酰基载体蛋白敲除还导致质体生物发生缺陷,进而导致该细胞器的丧失。最重要的是,在小鼠模型中对质体FAS II进行体内敲低可治愈致命的攻击感染。总之,我们的研究证明了质体FAS II功能与寄生虫存活和发病机制之间的直接联系。我们的遗传模型还提供了一个平台,用于剖析质体与寄生虫代谢的整合,特别是其与线粒体的假定相互作用。