Dy Catherine Y, Buczek Pawel, Imperial Julita S, Bulaj Grzegorz, Horvath Martin P
Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):980-90. doi: 10.1107/S0907444906021123. Epub 2006 Aug 19.
Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50-200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine-cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as alpha-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and alpha-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 3(10)-beta-beta-alpha Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in alpha-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the cost of losing a disulfide bond by augmenting and optimizing weaker yet nonetheless effective non-covalent interactions.
芋螺(芋螺属)是肉食性海洋软体动物,它们利用含有50 - 200种神经毒性多肽的毒液使猎物失去活动能力。这些多肽大多是富含二硫键的小芋螺毒素,可根据其各自的离子通道靶点和半胱氨酸 - 半胱氨酸二硫键模式分为不同家族。从条纹芋螺毒液中分离出的钾通道孔道阻断毒素芋螺毒素 - S1是一个新定义的芋螺毒素家族的成员,其序列与诸如α - 树眼镜蛇毒素和牛胰蛋白酶抑制剂(BPTI)等Kunitz折叠蛋白具有同源性。虽然芋螺毒素 - S1与α - 树眼镜蛇毒素在氨基酸序列上有42%的同一性,但芋螺毒素 - S1在通常存在于Kunitz蛋白中的六个半胱氨酸中只有四个。在此,报道了芋螺毒素 - S1的晶体结构。芋螺毒素 - S1采用典型的3(10)-β - β - α Kunitz折叠结构,还具有额外的独特结构特征,包括两个完全埋藏的水分子。该晶体结构虽然与先前报道的核磁共振距离限制完全一致,但为原子坐标提供了更高的精度,特别是对于硫原子和埋藏的溶剂分子。在其他Kunitz蛋白中通常由半胱氨酸II和IV交联的区域保留了与α - 树眼镜蛇毒素和BPTI中发现的类似的氢键和范德华相互作用网络。在芋螺毒素 - S1中,甘氨酸占据了通常为半胱氨酸II保留的序列位置,甘氨酸特殊的空间性质允许与替代半胱氨酸IV的谷氨酰胺残基有额外的范德华接触。因此,进化通过增强和优化较弱但仍然有效的非共价相互作用,弥补了失去一个二硫键的代价。