Reinert Rachel B, Oberle L Morgan, Wek Sheree A, Bunpo Piyawan, Wang Xue Ping, Mileva Izolda, Goodwin Leslie O, Aldrich Carla J, Durden Donald L, McNurlan Margaret A, Wek Ronald C, Anthony Tracy G
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Evansville, Indiana 47712, USA.
J Biol Chem. 2006 Oct 20;281(42):31222-33. doi: 10.1074/jbc.M604511200. Epub 2006 Aug 24.
L-asparaginase is important in the induction regimen for treating acute lymphoblastic leukemia. Cytotoxic complications are clinically significant problems lacking mechanistic insight. To reveal tissue-specific molecular responses to this drug, mice were administered asparaginase from either Escherichia coli (clinically used) or Wolinella succinogenes (novel, glutaminase-free form). Both enzymes abolished serum asparagine, but only the E. coli form reduced circulating glutamine. E. coli asparaginase reduced protein synthesis in liver and spleen but not pancreas via increased phosphorylation of the translation factor eIF2. In contrast, treatment with Wolinella caused no untoward changes in protein synthesis in any tissue examined. Treating mice deleted for the eIF2 kinase, GCN2, with the E. coli enzyme showed eIF2 phosphorylation to be GCN2-dependent, but only initially. Furthermore, although eIF2 phosphorylation was not increased in the pancreas or by Wolinella asparaginase, expression of the amino acid stress response genes, asparagine synthetase and CHOP/GADD153, increased as a result of both enzymes, even in tissues demonstrating no change in eIF2 phosphorylation. Finally, signaling downstream of the mammalian target of rapamycin kinase was repressed in liver and pancreas by E. coli but not Wolinella asparaginase. These data demonstrate that the nutrient stress response to asparaginase is tissue-specific and exacerbated by glutamine depletion. Importantly, increased expression of asparagine synthetase and CHOP does not require eIF2 phosphorylation, signifying alternate or auxiliary means of inducing gene expression under conditions of amino acid depletion in the whole animal.
L-天冬酰胺酶在治疗急性淋巴细胞白血病的诱导方案中很重要。细胞毒性并发症是临床上重要的问题,目前尚缺乏对其机制的深入了解。为了揭示对这种药物的组织特异性分子反应,给小鼠注射了来自大肠杆菌(临床使用)或琥珀酸沃氏嗜胆菌(新型无谷氨酰胺酶形式)的天冬酰胺酶。两种酶都消除了血清中的天冬酰胺,但只有大肠杆菌形式的酶降低了循环中的谷氨酰胺。大肠杆菌天冬酰胺酶通过增加翻译因子eIF2的磷酸化,降低了肝脏和脾脏中的蛋白质合成,但对胰腺没有影响。相比之下,用琥珀酸沃氏嗜胆菌处理后,在所检查的任何组织中蛋白质合成均未出现不良变化。用大肠杆菌酶处理缺失eIF2激酶GCN2的小鼠,结果显示eIF2磷酸化最初依赖于GCN2,但只是最初如此。此外,尽管胰腺中或用琥珀酸沃氏嗜胆菌天冬酰胺酶处理后eIF2磷酸化没有增加,但两种酶都导致了氨基酸应激反应基因天冬酰胺合成酶和CHOP/GADD153的表达增加,即使在eIF2磷酸化没有变化的组织中也是如此。最后,雷帕霉素激酶哺乳动物靶点下游的信号传导在肝脏和胰腺中被大肠杆菌天冬酰胺酶抑制,但未被琥珀酸沃氏嗜胆菌天冬酰胺酶抑制。这些数据表明,对天冬酰胺酶的营养应激反应具有组织特异性,并且谷氨酰胺消耗会加剧这种反应。重要的是,天冬酰胺合成酶和CHOP表达的增加并不需要eIF2磷酸化,这表明在全动物氨基酸耗竭的情况下,存在诱导基因表达的替代或辅助方式。