Lancaster Mark, Viele Kert, Johnstone A F M, Cooper Robin L
Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, United States.
J Neurosci Methods. 2007 Jan 30;159(2):325-36. doi: 10.1016/j.jneumeth.2006.07.014. Epub 2006 Aug 28.
We provide both theoretical and computational improvements to the analysis of synaptic transmission data. Theoretically, we demonstrate the correlation structure of observations within evoked postsynaptic potentials (EPSP) are consistent with multiple random draws from a common autoregressive moving-average (ARMA) process of order (2, 2). We use this observation and standard time series results to construct a statistical hypothesis testing procedure for determining whether a given trace is an EPSP. Computationally, we implement this method in R, a freeware statistical language, which reduces the amount of time required for the investigator to classify traces into EPSPs or non-EPSPs and eliminates investigator subjectivity from this classification. In addition, we provide a computational method for calculating common functionals of EPSPs (peak amplitude, decay rate, etc.). The methodology is freely available over the internet. The automated procedure to index the quantal characteristics greatly facilitates determining if any one or multiple parameters are changing due to experimental conditions. In our experience, the software reduces the time required to perform these analyses from hours to minutes.
我们在突触传递数据分析方面提供了理论和计算上的改进。理论上,我们证明了诱发突触后电位(EPSP)内观测值的相关结构与来自阶数为(2, 2)的共同自回归移动平均(ARMA)过程的多个随机抽样一致。我们利用这一观测结果和标准时间序列结果构建了一个统计假设检验程序,以确定给定的迹线是否为EPSP。在计算方面,我们用免费的统计语言R实现了该方法,这减少了研究人员将迹线分类为EPSP或非EPSP所需的时间,并消除了该分类过程中的研究人员主观性。此外,我们提供了一种计算方法来计算EPSP的常见函数(峰值幅度、衰减率等)。该方法可通过互联网免费获取。索引量子特征的自动化程序极大地便于确定是否有任何一个或多个参数因实验条件而发生变化。根据我们的经验,该软件将执行这些分析所需的时间从数小时减少到了数分钟。