Nowakowski Szymon, Tiuryn Jerzy
Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland.
J Biomed Inform. 2007 Apr;40(2):139-49. doi: 10.1016/j.jbi.2006.07.001. Epub 2006 Jul 21.
In this paper, we describe a novel method called Secondary Verification which assesses the quality of predictions of transcription factor binding sites. This method incorporates a distribution of prediction scores over positive examples (i.e. the actual binding sites) and is shown to be superior to p-value, routinely used statistical significance assessment, which uses only a distribution of prediction scores over background sequences. We also discuss how to integrate both distributions into a framework called Secondary Verification Assessment method which evaluates the quality of a model of a transcription factor. Based on that we create a hybrid representation of a transcription factor: we select the description (with or without dependencies) which is best for the transcription factor considered.
在本文中,我们描述了一种名为二次验证的新方法,该方法用于评估转录因子结合位点预测的质量。此方法纳入了正例(即实际结合位点)上预测分数的分布,并且已证明优于p值(一种常规使用的统计显著性评估方法,其仅使用背景序列上预测分数的分布)。我们还讨论了如何将这两种分布整合到一个名为二次验证评估方法的框架中,该框架用于评估转录因子模型的质量。基于此,我们创建了转录因子的混合表示:我们选择最适合所考虑转录因子的描述(有或无依赖性)。