Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning A M, Garte S, Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulos D, Kalandidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita H B, Peeters P H, Lund E, Pera G, Martinez C, Amiano P, Barricarte A, Tormo M J, Quiros J R, Berglund G, Janzon L, Jarvholm B, Day N E, Allen N E, Saracci R, Kaaks R, Ferrari P, Riboli E, Vineis P
ISI Foundation, Torino Italy.
Carcinogenesis. 2007 Feb;28(2):414-22. doi: 10.1093/carcin/bgl159. Epub 2006 Sep 6.
It is becoming increasingly evident that single-locus effects cannot explain complex multifactorial human diseases like cancer. We applied the multi-factor dimensionality reduction (MDR) method to a large cohort study on gene-environment and gene-gene interactions. The study (case-control nested in the EPIC cohort) was established to investigate molecular changes and genetic susceptibility in relation to air pollution and environmental tobacco smoke (ETS) in non-smokers. We have analyzed 757 controls and 409 cases with bladder cancer (n=124), lung cancer (n=116) and myeloid leukemia (n=169). Thirty-six gene variants (DNA repair and metabolic genes) and three environmental exposure variables (measures of air pollution and ETS at home and at work) were analyzed. Interactions were assessed by prediction error percentage and cross-validation consistency (CVC) frequency. For lung cancer, the best model was given by a significant gene-environment association between the base excision repair (BER) XRCC1-Arg399Gln polymorphism, the double-strand break repair (DSBR) BRCA2-Asn372His polymorphism and the exposure variable 'distance from heavy traffic road', an indirect and robust indicator of air pollution (mean prediction error of 26%, P<0.001, mean CVC of 6.60, P=0.02). For bladder cancer, we found a significant 4-loci association between the BER APE1-Asp148Glu polymorphism, the DSBR RAD52-3'-untranslated region (3'-UTR) polymorphism and the metabolic gene polymorphisms COMT-Val158Met and MTHFR-677C>T (mean prediction error of 22%, P<0.001, mean CVC consistency of 7.40, P<0.037). For leukemia, a 3-loci model including RAD52-2259C>T, MnSOD-Ala9Val and CYP1A1-Ile462Val had a minimum prediction error of 31% (P<0.001) and a maximum CVC of 4.40 (P=0.086). The MDR method seems promising, because it provides a limited number of statistically stable interactions; however, the biological interpretation remains to be understood.
越来越明显的是,单基因座效应无法解释像癌症这样复杂的多因素人类疾病。我们将多因素降维(MDR)方法应用于一项关于基因 - 环境和基因 - 基因相互作用的大型队列研究。该研究(嵌套在EPIC队列中的病例对照研究)旨在调查非吸烟者中与空气污染和环境烟草烟雾(ETS)相关的分子变化和遗传易感性。我们分析了757名对照以及409例膀胱癌(n = 124)、肺癌(n = 116)和髓系白血病(n = 169)患者。分析了36个基因变异(DNA修复和代谢基因)以及三个环境暴露变量(家庭和工作场所的空气污染和ETS测量值)。通过预测误差百分比和交叉验证一致性(CVC)频率评估相互作用。对于肺癌,最佳模型由碱基切除修复(BER)XRCC1 - Arg399Gln多态性、双链断裂修复(DSBR)BRCA2 - Asn372His多态性与暴露变量“距繁忙交通道路的距离”之间显著的基因 - 环境关联给出,“距繁忙交通道路的距离”是空气污染的一个间接且可靠的指标(平均预测误差为26%,P < 0.001,平均CVC为6.60,P = 0.02)。对于膀胱癌,我们发现BER APE1 - Asp148Glu多态性、DSBR RAD52 - 3'非翻译区(3'-UTR)多态性与代谢基因多态性COMT - Val158Met和MTHFR - 677C>T之间存在显著的4基因座关联(平均预测误差为22%,P < 0.001,平均CVC一致性为7.40,P < 0.037)。对于白血病,一个包含RAD52 - 2259C>T、MnSOD - Ala9Val和CYP1A1 - Ile462Val的3基因座模型的最小预测误差为31%(P < 0.001),最大CVC为4.40(P = 0.086)。MDR方法似乎很有前景,因为它提供了数量有限的统计上稳定的相互作用;然而,其生物学解释仍有待理解。