Suppr超能文献

具有初始化疗反应潜在预测价值的化疗耐药和化疗敏感浆液性上皮性卵巢肿瘤的基因表达模式。

Gene expression patterns of chemoresistant and chemosensitive serous epithelial ovarian tumors with possible predictive value in response to initial chemotherapy.

作者信息

Bachvarov Dimcho, L'esperance Sylvain, Popa Ion, Bachvarova Magdalena, Plante Marie, Têtu Bernard

机构信息

Department of Medicine, Laval University, Québec, Canada.

出版信息

Int J Oncol. 2006 Oct;29(4):919-33.

Abstract

Chemotherapy (CT) resistance in ovarian cancer is broad and encompasses diverse, unrelated drugs, suggesting more than one mechanism of resistance. We aimed to analyze the gene expression patterns in primary serous epithelial ovarian cancer (EOC) samples displaying different responses to first-line CT in an attempt to identify specific molecular signatures associated with response to CT. Initially, the expression profiles of 15 chemoresistant serous EOC tumors [time to recurrence (TTR) </=6 months] and 10 chemosensitive serous EOC tumors (TTR > or =30 months) were independently analyzed which allowed the identification of specific sets of differentially expressed genes that might be functionally implicated in the evolution of the chemoresistant or the chemosensitive phenotype. Our data suggest that the intrinsic chemoresistance in serous EOC cells may be attributed to the combined action of different molecular mechanisms and factors linked with drug influx and efflux and cell proliferation, as possible implications of other molecular events including altered metabolism, apoptosis and inflammation cannot be excluded. Next, gene expression comparison using hierarchical clustering clearly distinguished chemosensitive and chemoresistant tumors from the 25 serous EOC samples (training set), and consecutive class prediction analysis was used to develop a 43-gene classifier that was further validated in an independent cohort of 15 serous EOC patients and 2 patients with other ovarian cancer histotypes (test set). The 43-gene predictor set properly classified serous EOC patients at high risk for early (< or =22 months) versus late (>22 months) relapse after initial CT. Thus, gene expression array technology can effectively classify serous EOC tumors according to CT response. The proposed 43-gene model needs further validation.

摘要

卵巢癌中的化疗(CT)耐药性广泛,涵盖多种不相关的药物,这表明存在不止一种耐药机制。我们旨在分析原发性浆液性上皮性卵巢癌(EOC)样本中的基因表达模式,这些样本对一线CT表现出不同反应,试图识别与CT反应相关的特定分子特征。最初,对15例化疗耐药的浆液性EOC肿瘤[复发时间(TTR)≤6个月]和10例化疗敏感的浆液性EOC肿瘤(TTR≥30个月)的表达谱进行了独立分析,这使得能够识别出可能在化疗耐药或化疗敏感表型演变中具有功能意义的特定差异表达基因集。我们的数据表明,浆液性EOC细胞中的内在化疗耐药性可能归因于与药物流入和流出以及细胞增殖相关的不同分子机制和因素的共同作用,因为包括代谢改变、凋亡和炎症在内的其他分子事件的可能影响也不能排除。接下来,使用层次聚类进行基因表达比较,清楚地将25例浆液性EOC样本(训练集)中的化疗敏感和化疗耐药肿瘤区分开来,并使用连续的类别预测分析来开发一个43基因分类器,该分类器在15例浆液性EOC患者和2例其他卵巢癌组织学类型患者的独立队列(测试集)中得到了进一步验证。43基因预测集能够正确地将浆液性EOC患者分为初始CT后早期(≤22个月)复发与晚期(>22个月)复发的高风险组。因此,基因表达阵列技术可以根据CT反应有效地对浆液性EOC肿瘤进行分类。所提出的43基因模型需要进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验