Suppr超能文献

河流生物监测中的群落分析:我们所测量的与未测量的。

Community analysis in stream biomonitoring: what we measure and what we don't.

作者信息

Passy Sophia I

机构信息

Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA.

出版信息

Environ Monit Assess. 2007 Apr;127(1-3):409-17. doi: 10.1007/s10661-006-9290-x. Epub 2006 Sep 9.

Abstract

Diatom assemblages from 83 epilithic samples taken from the Mesta River, Bulgaria, were regressed against three sets of predictor variables, i.e. environmental, spatial, and temporal. Redundancy analysis (RDA) of species and environmental data explained 36% of the diatom variance and extracted several important gradients of species distribution, associated with a downstream increase in nutrient levels, pH, temperature, and organic pollution. The inclusion of spatial and temporal variables in the RDA model captured additional 24% of the diatom variance and revealed three more gradients, a spatial gradient represented by higher order polynomial terms of latitude and longitude, and two temporal gradients of annual and seasonal variation. Partial RDAs demonstrated that the unique contribution of each predictor set to the explained diatom variance was the highest in the spatial dataset (16%), followed by the environmental (9%), and the temporal (7%) datasets. The remaining 28% of the variance was explained by the covariance of the predictor sets. This suggests that in biomonitoring of single stream basins, the cheap and simple account of space and time would explain most of the variance in assemblage composition obviating the necessity of expensive and time-consuming environmental assessments. The nature of the underlying environmental mechanisms can be easily inferred from the diatom composition itself.

摘要

对取自保加利亚梅斯塔河的83个附石样本中的硅藻组合,针对三组预测变量(即环境、空间和时间变量)进行了回归分析。物种与环境数据的冗余分析(RDA)解释了36%的硅藻变异,并提取了几个重要的物种分布梯度,这些梯度与下游营养水平、pH值、温度和有机污染的增加有关。在RDA模型中纳入空间和时间变量又捕获了24%的硅藻变异,并揭示了另外三个梯度,一个由纬度和经度的高阶多项式项表示的空间梯度,以及年度和季节变化的两个时间梯度。偏冗余分析表明,每个预测变量集对解释的硅藻变异的独特贡献在空间数据集中最高(16%),其次是环境数据集(9%)和时间数据集(7%)。其余28%的变异由预测变量集的协方差解释。这表明,在单一流域的生物监测中,对空间和时间进行廉价而简单的考量就能解释组合组成中大部分的变异,从而无需进行昂贵且耗时的环境评估。潜在环境机制的性质可以很容易地从硅藻组成本身推断出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验