Liu Quanhua, Weng Fuzhong
Joint Center for Satellite Data Assimilation, Camp springs, Maryland 20746, USA.
Appl Opt. 2006 Oct 1;45(28):7475-9. doi: 10.1364/ao.45.007475.
The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.
相位函数是影响散射辐射分布的一个重要参数。在瑞利散射中,散射体可近似为一个偶极子,其相位函数与散射角存在解析关系。对于亨耶-格林斯坦(HG)近似,相位函数仅保留了正确的不对称因子(即一阶矩),这对于各向异性散射至关重要。当HG函数应用于小粒子时,它会在辐射率上产生显著误差。此外,HG函数仅适用于强度辐射传输。我们开发了一种HG和瑞利(HG-瑞利)组合相位函数。HG相位函数起到调制器的作用,扩展了瑞利相位函数在小不对称散射中的应用。HG-瑞利相位函数保证了正确的不对称因子,并且对偏振辐射传输有效。对于小粒子,它趋近于瑞利相位函数。因此,HG-瑞利相位函数在强度和偏振辐射传输方面都有更广泛的应用。在本研究的微波辐射传输建模中,使用HG-瑞利相位函数进行弱不对称散射的亮温计算时,最大误差通常低于0.02K。如果分别应用瑞利函数和HG函数,误差可能会大得多,在1 - 3K范围内。