Suppr超能文献

具有时间分形维数的时空内的神经元分化与突触形成。

Neuronal differentiation and synapse formation in the space-time with temporal fractal dimension.

作者信息

Molski Marcin, Konarski Jerzy

机构信息

Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University of Poznań, Poznań, Poland.

出版信息

Synapse. 2006 Dec 15;60(8):567-72. doi: 10.1002/syn.20333.

Abstract

An improvement of the Waliszewski and Konarski approach ([2002] Synapse 43:252-258) to determine the temporal fractal dimension b(t) and scaling factor a(t) for the process of neuronal differentiation and synapse formation in the fractal space-time is presented. In particular the analytical formulae describing the time-dependence of b(t)(t) and a(t)(t), which satisfy the appropriate boundary conditions for t-->0 and t-->infinity, are derived. They have been used to determine the temporal fractal dimension and scaling factor from the two-parametric Gompertz function fitted to experimental data obtained by Jones-Villeneuve et al. ([1982] J Cell Biol 94:253-262) for embryonal carcinoma P19 cells treated by retinoic acid. The results of the calculations differ from those obtained previously by making use of the three- and four-parametric Gompertz function as well as other S-shape functions (Chapman, Hill, Logistic, Sigmoid) evaluated by the fitting of the experimental curve. The temporal fractal dimension can be used as a numerical measure of the neuronal complexity emerging in the process of differentiation, which can be related to the morphofunctional cell organization. A hypothesis is formulated that neuronal differentiation and synapse formation have a lot in common with the process of tumorigenesis. They are qualitatively described by the same Gompertz function of growth and take place in the fractal space-time whose mean temporal fractal dimension is lost during progression.

摘要

本文提出了一种对瓦利谢夫斯基和科纳尔斯基方法([2002]《突触》43:252 - 258)的改进,用于确定分形时空下神经元分化和突触形成过程的时间分形维数b(t)和标度因子a(t)。特别地,推导了描述b(t)(t)和a(t)(t)时间依赖性的解析公式,这些公式满足t→0和t→∞时的适当边界条件。它们已被用于从拟合琼斯 - 维伦纽夫等人([1982]《细胞生物学杂志》94:253 - 262)获得的实验数据的双参数冈珀茨函数中确定时间分形维数和标度因子,这些实验数据是关于用视黄酸处理的胚胎癌P19细胞的。计算结果与先前利用三参数和四参数冈珀茨函数以及通过拟合实验曲线评估的其他S形函数(查普曼、希尔、逻辑斯蒂、S形)得到的结果不同。时间分形维数可作为分化过程中出现的神经元复杂性的数值度量,这可能与形态功能细胞组织有关。提出了一个假设,即神经元分化和突触形成与肿瘤发生过程有许多共同之处。它们在性质上由相同的生长冈珀茨函数描述,并且发生在分形时空中,其平均时间分形维数在进展过程中丧失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验