Kovacikova J, Winter C, Loffing-Cueni D, Loffing J, Finberg K E, Lifton R P, Hummler E, Rossier B, Wagner C A
1Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
Kidney Int. 2006 Nov;70(10):1706-16. doi: 10.1038/sj.ki.5001851. Epub 2006 Sep 20.
Final urinary acidification is achieved by electrogenic vacuolar H(+)-ATPases expressed in acid-secretory intercalated cells (ICs) in the connecting tubule (CNT) and the cortical (CCD) and initial medullary collecting duct (MCD), respectively. Electrogenic Na(+) reabsorption via epithelial Na(+) channels (ENaCs) in the apical membrane of the segment-specific CNT and collecting duct cells may promote H(+)-ATPases-mediated proton secretion by creating a more lumen-negative voltage. The exact localization where this supposed functional interaction takes place is unknown. We used several mouse models performing renal clearance experiments and assessed the furosemide-induced urinary acidification. Increasing Na(+) delivery to the CNT and CCD by blocking Na(+) reabsorption in the thick ascending limb with furosemide enhanced urinary acidification and net acid excretion. This effect of furosemide was abolished with amiloride or benzamil blocking ENaC action. In mice deficient for the IC-specific B1 subunit of the vacuolar H(+)-ATPase, furosemide led to only a small urinary acidification. In contrast, in mice with a kidney-specific inactivation of the alpha subunit of ENaC in the CCD and MCD, but not in the CNT, furosemide alone and in combination with hydrochlorothiazide induced normal urinary acidification. These results suggest that the B1 vacuolar H(+)-ATPase subunit is necessary for the furosemide-induced acute urinary acidification. Loss of ENaC channels in the CCD and MCD does not affect this acidification. Thus, functional expression of ENaC channels in the CNT is sufficient for furosemide-stimulated urinary acidification and identifies the CNT as a major segment in electrogenic urinary acidification.
终末尿液酸化是由分别在连接小管(CNT)、皮质集合管(CCD)和初始髓质集合管(MCD)中表达的泌酸闰细胞(ICs)中的电生性液泡H(+)-ATP酶实现的。通过节段特异性CNT和集合管细胞顶端膜上的上皮钠通道(ENaCs)进行的电生性钠重吸收,可通过产生更负的管腔电压来促进H(+)-ATP酶介导的质子分泌。这种假定的功能相互作用发生的确切位置尚不清楚。我们使用了几种小鼠模型进行肾脏清除实验,并评估了速尿诱导的尿液酸化。通过用速尿阻断厚壁升支中的钠重吸收来增加向CNT和CCD的钠输送,可增强尿液酸化和净酸排泄。阿米洛利或苯扎米利阻断ENaC作用可消除速尿的这种作用。在缺乏液泡H(+)-ATP酶IC特异性B1亚基的小鼠中,速尿仅导致少量尿液酸化。相反,在CCD和MCD中肾脏特异性失活ENaCα亚基的小鼠中,但在CNT中未失活,速尿单独使用以及与氢氯噻嗪联合使用均可诱导正常的尿液酸化。这些结果表明,B1液泡H(+)-ATP酶亚基对于速尿诱导的急性尿液酸化是必需的。CCD和MCD中ENaC通道的缺失不影响这种酸化。因此,CNT中ENaC通道的功能性表达足以实现速尿刺激的尿液酸化,并将CNT确定为电生性尿液酸化的主要节段。