Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M
Department of Physics, University of California, Berkeley, California 94720, USA.
Nature. 2006 Sep 21;443(7109):312-5. doi: 10.1038/nature05094.
A central goal in condensed matter and modern atomic physics is the exploration of quantum phases of matter--in particular, how the universal characteristics of zero-temperature quantum phase transitions differ from those established for thermal phase transitions at non-zero temperature. Compared to conventional condensed matter systems, atomic gases provide a unique opportunity to explore quantum dynamics far from equilibrium. For example, gaseous spinor Bose-Einstein condensates (whose atoms have non-zero internal angular momentum) are quantum fluids that simultaneously realize superfluidity and magnetism, both of which are associated with symmetry breaking. Here we explore spontaneous symmetry breaking in 87Rb spinor condensates, rapidly quenched across a quantum phase transition to a ferromagnetic state. We observe the formation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in situ detection of spin vortices. The latter are topological defects resulting from the symmetry breaking, containing non-zero spin current but no net mass current.
凝聚态物质和现代原子物理学的一个核心目标是探索物质的量子相——特别是零温度量子相变的普遍特征如何不同于在非零温度下建立的热相变特征。与传统的凝聚态物质系统相比,原子气体为探索远离平衡的量子动力学提供了独特的机会。例如,气态自旋玻色-爱因斯坦凝聚体(其原子具有非零的内禀角动量)是同时实现超流性和磁性的量子流体,这两者都与对称性破缺有关。在这里,我们研究了87Rb自旋凝聚体中的自发对称性破缺,它通过量子相变快速猝灭到铁磁态。我们观察到自旋纹理、铁磁畴和畴壁的形成,并展示了对自旋涡旋的相敏原位检测。后者是由对称性破缺产生的拓扑缺陷,包含非零的自旋电流但没有净质量电流。