Suppr超能文献

蟹神经中钠泵外部激活位点的一些特性

Some properties of the external activation site of the sodium pump in crab nerve.

作者信息

Baker P F, Connelly C M

出版信息

J Physiol. 1966 Jul;185(2):270-97. doi: 10.1113/jphysiol.1966.sp007987.

Abstract
  1. Methods are described for using the changes in respiration of intact Libinia nerve to follow the rate of energy utilization by the sodium pump in this tissue.2. Short tetani in 10 K(Na)ASW (artificial sea water in which Na is the major cation and the potassium concentration is 10 mM) increased the oxygen uptake which then declined exponentially. From the net influx of Na during the tetanus and the associated oxygen uptake, values between 1.9 and 3.4 were calculated for the Na: approximately P ratio. After longer tetani, the recovery curve was S-shaped.3. The pump was activated by potassium ions in the external medium and this activation was competitively inhibited by external sodium ions. The data are consistent with a Michaelis constant (K(m)) for external potassium of 1 mM and an inhibitor constant (K(i)) for external sodium of 60 mM.4. In activating the pump, K could be replaced by Tl(+), Rb, NH(4) and Cs ions; but, of the monovalent ions tested, sodium seemed to be unique in its inhibitory action.5. In sea waters containing 460 mM-Na, ouabain behaved like a mixed inhibitor of the pump, reducing both the maximum velocity and the apparent affinity for external potassium. At a given ouabain concentration, reducing the sodium content of the medium was without effect on the maximum rate of pumping; but the apparent affinity for potassium increased more steeply than in a ouabain-free solution.6. The rate of energy utilization associated with pumping was unaffected by inclusion of quite high concentrations of sulphydryl-blocking agents in the external medium.
摘要
  1. 本文描述了利用完整的Libinia神经呼吸变化来追踪该组织中钠泵能量利用速率的方法。

  2. 在10 K(Na)ASW(以钠为主要阳离子且钾浓度为10 mM的人工海水)中进行短时间强直刺激会增加氧摄取量,随后氧摄取量呈指数下降。根据强直刺激期间钠的净内流以及相关的氧摄取量,计算出钠与磷的比值在1.9至3.4之间。长时间强直刺激后,恢复曲线呈S形。

  3. 泵可被细胞外介质中的钾离子激活,且这种激活会被细胞外钠离子竞争性抑制。数据表明细胞外钾的米氏常数(K(m))为1 mM,细胞外钠的抑制常数(K(i))为60 mM。

  4. 在激活泵时,钾可被铊离子(Tl(+))、铷离子、铵离子和铯离子替代;但在所测试的单价离子中,钠在其抑制作用方面似乎是独特的。

  5. 在含有460 mM钠的海水中,哇巴因表现为泵的混合抑制剂,降低了最大速度以及对细胞外钾的表观亲和力。在给定的哇巴因浓度下,降低介质中的钠含量对最大泵浦速率没有影响;但对钾的表观亲和力比在无哇巴因溶液中增加得更陡峭。

  6. 与泵浦相关的能量利用速率不受细胞外介质中加入相当高浓度的巯基阻断剂的影响。

相似文献

1
Some properties of the external activation site of the sodium pump in crab nerve.
J Physiol. 1966 Jul;185(2):270-97. doi: 10.1113/jphysiol.1966.sp007987.
2
The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
J Physiol. 1969 Feb;200(2):459-96. doi: 10.1113/jphysiol.1969.sp008703.
3
The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
J Physiol. 1977 Sep;271(1):289-318. doi: 10.1113/jphysiol.1977.sp012001.
5
Thallium and the sodium pump in human red cells.
J Physiol. 1974 Nov;243(1):243-66. doi: 10.1113/jphysiol.1974.sp010752.
7
An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
J Gen Physiol. 1973 Feb;61(2):222-50. doi: 10.1085/jgp.61.2.222.
8
Sodium and rubidium fluxes in rat red blood cells.
J Physiol. 1971 Nov;218(3):533-49. doi: 10.1113/jphysiol.1971.sp009632.
9
Active sodium and potassium transport in high potassium and low potassium sheep red cells.
J Gen Physiol. 1971 Oct;58(4):438-66. doi: 10.1085/jgp.58.4.438.
10
A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
J Clin Invest. 1974 Mar;53(3):745-55. doi: 10.1172/JCI107613.

引用本文的文献

1
Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area.
Curr Biol. 2023 May 8;33(9):1744-1752.e7. doi: 10.1016/j.cub.2023.03.071. Epub 2023 Apr 19.
2
Physiological adaptation of an Antarctic Na+/K+-ATPase to the cold.
J Exp Biol. 2011 Jul 1;214(Pt 13):2164-74. doi: 10.1242/jeb.048744.
3
Regulation of Na+/K+ ATPase transport velocity by RNA editing.
PLoS Biol. 2010 Nov 23;8(11):e1000540. doi: 10.1371/journal.pbio.1000540.
4
The relationship between sodium pump activity and twitch tension in cardiac Purkinje fibres.
J Physiol. 1980 Jun;303:475-94. doi: 10.1113/jphysiol.1980.sp013299.
5
Characterization of the electrogenic sodium pump in cardiac Purkinje fibres.
J Physiol. 1980 Jun;303(1):441-74. doi: 10.1113/jphysiol.1980.sp013298.
9
Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers.
Proc Natl Acad Sci U S A. 1980 Jul;77(7):4035-9. doi: 10.1073/pnas.77.7.4035.
10
The behaviour of the sodium pump in red cells in the absence of external potassium.
J Physiol. 1967 Sep;192(1):159-74. doi: 10.1113/jphysiol.1967.sp008294.

本文引用的文献

1
The depolarization of crustacean nerve by stimulation or oxygen want.
J Physiol. 1929 Jul 25;67(4):325-42. doi: 10.1113/jphysiol.1929.sp002573.
2
The connexion between active cation transport and metabolism in erythrocytes.
Biochem J. 1965 Oct;97(1):214-27. doi: 10.1042/bj0970214.
4
The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle.
J Physiol. 1959 Oct;147(3):591-625. doi: 10.1113/jphysiol.1959.sp006264.
5
Active transport of cations in giant axons from Sepia and Loligo.
J Physiol. 1955 Apr 28;128(1):28-60. doi: 10.1113/jphysiol.1955.sp005290.
7
SOME FURTHER OBSERVATIONS ON THE SODIUM EFFLUX IN FROG MUSCLE.
J Physiol. 1965 May;178(2):305-25. doi: 10.1113/jphysiol.1965.sp007629.
8
AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS.
Comp Biochem Physiol. 1965 Jan;14:167-83. doi: 10.1016/0010-406x(65)90017-4.
9
THE ROLE OF NA+ AND K+ IN THE OUABAIN-INHIBITION OF THE NA+ + K+-ACTIVATED MEMBRANE ADENOSINE TRIPHOSPHATASE.
Biochim Biophys Acta. 1965 Jan 25;94:89-96. doi: 10.1016/0926-6585(65)90011-7.
10
POTASSIUM-FREE EFFECT IN SQUID AXONS.
Nature. 1964 Dec 26;204:1312-3. doi: 10.1038/2041312b0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验