Teh Chee Siong, Lim Chee Peng
IEEE Trans Neural Netw. 2006 Sep;17(5):1336-41. doi: 10.1109/TNN.2006.877536.
A new lattice disentangling monitoring algorithm for a hybrid self-organizing map-kernel-based maximum entropy learning rule (SOM-kMER) model is proposed. It aims to overcome topological defects owing to a rapid decrease of the neighborhood range over the finite running time in topographic map formation. The empirical results demonstrate that the proposed approach is able to accelerate the formation of a topographic map and, at the same time, to simplify the monitoring procedure.
提出了一种用于基于混合自组织映射-核的最大熵学习规则(SOM-kMER)模型的新型格点解缠监测算法。其目的是克服在地形图形成过程中,由于邻域范围在有限运行时间内迅速减小而导致的拓扑缺陷。实证结果表明,所提出的方法能够加速地形图的形成,同时简化监测过程。