Suppr超能文献

作为听觉滤波器表示的roex滤波器和伽马啁啾滤波器的比较。

Comparison of the roex and gammachirp filters as representations of the auditory filter.

作者信息

Unoki Masashi, Irino Toshio, Glasberg Brian, Moore Brian C J, Patterson Roy D

机构信息

School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

出版信息

J Acoust Soc Am. 2006 Sep;120(3):1474-92. doi: 10.1121/1.2228539.

Abstract

Although the rounded-exponential (roex) filter has been successfully used to represent the magnitude response of the auditory filter, recent studies with the roex(p, w, t) filter reveal two serious problems: the fits to notched-noise masking data are somewhat unstable unless the filter is reduced to a physically unrealizable form, and there is no time-domain version of the roex(p, w, t) filter to support modeling of the perception of complex sounds. This paper describes a compressive gammachirp (cGC) filter with the same architecture as the roex(p, w, t) which can be implemented in the time domain. The gain and asymmetry of this parallel cGC filter are shown to be comparable to those of the roex(p, w, t) filter, but the fits to masking data are still somewhat unstable. The roex(p, w, t) and parallel cGC filters were also compared with the cascade cGC filter [Patterson et al., J. Acoust. Soc. Am. 114, 1529-1542 (2003)], which was found to provide an equivalent fit with 25% fewer coefficients. Moreover, the fits were stable. The advantage of the cascade cGC filter appears to derive from its parsimonious representation of the high-frequency side of the filter. It is concluded that cGC filters offer better prospects than roex filters for the representation of the auditory filter.

摘要

尽管圆形指数(roex)滤波器已成功用于表示听觉滤波器的幅度响应,但最近对roex(p,w,t)滤波器的研究揭示了两个严重问题:除非将滤波器简化为物理上不可实现的形式,否则对带凹口噪声掩蔽数据的拟合有些不稳定,并且不存在roex(p,w,t)滤波器的时域版本来支持对复杂声音感知的建模。本文描述了一种具有与roex(p,w,t)相同架构的压缩伽马啁啾(cGC)滤波器,它可以在时域中实现。该并行cGC滤波器的增益和不对称性被证明与roex(p,w,t)滤波器相当,但对掩蔽数据的拟合仍然有些不稳定。还将roex(p,w,t)滤波器和并行cGC滤波器与级联cGC滤波器[帕特森等人,《美国声学学会杂志》114,1529 - 1542(2003)]进行了比较,发现级联cGC滤波器能以少25%的系数提供等效的拟合。此外,拟合是稳定的。级联cGC滤波器的优势似乎源于其对滤波器高频侧的简洁表示。得出的结论是,对于听觉滤波器的表示,cGC滤波器比roex滤波器具有更好的前景。

相似文献

1
Comparison of the roex and gammachirp filters as representations of the auditory filter.
J Acoust Soc Am. 2006 Sep;120(3):1474-92. doi: 10.1121/1.2228539.
2
Extending the domain of center frequencies for the compressive gammachirp auditory filter.
J Acoust Soc Am. 2003 Sep;114(3):1529-42. doi: 10.1121/1.1600720.
4
A compressive gammachirp auditory filter for both physiological and psychophysical data.
J Acoust Soc Am. 2001 May;109(5 Pt 1):2008-22. doi: 10.1121/1.1367253.
5
6
Auditory filter nonlinearity across frequency using simultaneous notched-noise masking.
J Acoust Soc Am. 2006 Jan;119(1):454-62. doi: 10.1121/1.2139100.
7
Auditory filter nonlinearity at 2 kHz in normal hearing listeners.
J Acoust Soc Am. 1998 May;103(5 Pt 1):2539-50. doi: 10.1121/1.422775.
8
Simple triangular approximations of auditory filter shapes.
J Speech Hear Res. 1990 Sep;33(3):530-9. doi: 10.1044/jshr.3303.530.

引用本文的文献

1
Estimation of Cochlear Frequency Selectivity Using a Convolution Model of Forward-Masked Compound Action Potentials.
J Assoc Res Otolaryngol. 2024 Feb;25(1):35-51. doi: 10.1007/s10162-023-00922-1. Epub 2024 Jan 26.
2
Improving Auditory Filter Estimation by Incorporating Absolute Threshold and a Level-dependent Internal Noise.
Trends Hear. 2023 Jan-Dec;27:23312165231209750. doi: 10.1177/23312165231209750.
3
Auditory motion perception emerges from successive sound localizations integrated over time.
Sci Rep. 2019 Nov 11;9(1):16437. doi: 10.1038/s41598-019-52742-0.
4
A FPGA Implementation of the CAR-FAC Cochlear Model.
Front Neurosci. 2018 Apr 10;12:198. doi: 10.3389/fnins.2018.00198. eCollection 2018.
5
English phonology and an acoustic language universal.
Sci Rep. 2017 Apr 11;7:46049. doi: 10.1038/srep46049.
7
The role of compression in the simultaneous masker phase effect.
J Acoust Soc Am. 2016 Oct;140(4):2680. doi: 10.1121/1.4964328.
8
PsyAcoustX: A flexible MATLAB(®) package for psychoacoustics research.
Front Psychol. 2015 Oct 12;6:1498. doi: 10.3389/fpsyg.2015.01498. eCollection 2015.
9
Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners.
PLoS One. 2015 Jul 15;10(7):e0132423. doi: 10.1371/journal.pone.0132423. eCollection 2015.

本文引用的文献

1
Speech Segregation Using an Auditory Vocoder With Event-Synchronous Enhancements.
IEEE Trans Audio Speech Lang Process. 2006 Nov;14(6):2212-2221. doi: 10.1109/TASL.2006.872611.
2
A Dynamic Compressive Gammachirp Auditory Filterbank.
IEEE Trans Audio Speech Lang Process. 2006 Nov;14(6):2222-2232. doi: 10.1109/TASL.2006.874669.
3
Invariance principles for cochlear mechanics: hearing phases.
J Acoust Soc Am. 2006 Feb;119(2):997-1004. doi: 10.1121/1.2159428.
4
Auditory filter nonlinearity across frequency using simultaneous notched-noise masking.
J Acoust Soc Am. 2006 Jan;119(1):454-62. doi: 10.1121/1.2139100.
6
Estimates of human cochlear tuning at low levels using forward and simultaneous masking.
J Assoc Res Otolaryngol. 2003 Dec;4(4):541-54. doi: 10.1007/s10162-002-3058-y. Epub 2003 Jul 10.
7
Speech segregation based on sound localization.
J Acoust Soc Am. 2003 Oct;114(4 Pt 1):2236-52. doi: 10.1121/1.1610463.
8
Extending the domain of center frequencies for the compressive gammachirp auditory filter.
J Acoust Soc Am. 2003 Sep;114(3):1529-42. doi: 10.1121/1.1600720.
9
Neuromagnetic evidence for a pitch processing center in Heschl's gyrus.
Cereb Cortex. 2003 Jul;13(7):765-72. doi: 10.1093/cercor/13.7.765.
10
Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing.
J Acoust Soc Am. 2003 Feb;113(2):951-60. doi: 10.1121/1.1534838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验