Drew Michael G B, Metcalfe John, Dascombe Michael J, Ismail Fyaz M D
Department of Chemistry, University of Reading, Reading RG6 6AD, UK.
J Med Chem. 2006 Oct 5;49(20):6065-73. doi: 10.1021/jm060673d.
The currently accepted mechanism of trioxane antimalarial action involves generation of free radicals within or near susceptible sites probably arising from the production of distonic radical anions. An alternative mechanistic proposal involving the ionic scission of the peroxide group and consequent generation of a carbocation at C-4 has been suggested to account for antimalarial activity. We have investigated this latter mechanism using DFT (B3LYP/6-31+G* level) and established the preferred Lewis acid protonation sites (artemisinin O5a>>O4a approximately O3a>O2a>O1a; arteether O4a>or=O3a>O5b>>O2a>O1a; Figure 3) and the consequent decomposition pathways and hydrolysis sites. In neither molecule is protonation likely to occur on the peroxide bond O1-O2 and therefore lead to scission. Therefore, the alternative radical pathway remains the likeliest explanation for antimalarial action.
目前公认的三恶烷抗疟作用机制涉及在易感位点内或附近产生自由基,这可能源于双自由基阴离子的产生。有人提出了另一种机制,即过氧化物基团的离子断裂并随后在C-4处生成碳正离子,以解释其抗疟活性。我们使用密度泛函理论(DFT,B3LYP/6-31+G*水平)研究了后一种机制,并确定了首选的路易斯酸质子化位点(青蒿素:O5a>>O4a≈O3a>O2a>O1a;蒿乙醚:O4a≥O3a>O5b>>O2a>O1a;图3)以及随之而来的分解途径和水解位点。在这两种分子中,质子化都不太可能发生在过氧化物键O1-O2上,因此不会导致断裂。因此,另一种自由基途径仍然是抗疟作用最有可能的解释。