Rybak Ilya A, Stecina Katinka, Shevtsova Natalia A, McCrea David A
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
J Physiol. 2006 Dec 1;577(Pt 2):641-58. doi: 10.1113/jphysiol.2006.118711. Epub 2006 Sep 28.
A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion.
基于在去大脑猫的虚拟运动中获得的观察结果,开发了一种包含两级中枢模式发生器(CPG)的哺乳动物脊髓回路计算模型,该CPG具有独立的半中枢节律发生器(RG)和模式形成(PF)网络。感觉传入神经已被纳入模型,以研究传入刺激对运动相位转换、步周期以及屈肌和伸肌运动神经元放电模式的影响。在这里,我们表明这种CPG结构可以与反射回路整合,以重现运动过程中I组反射通路的重组。在虚拟运动的伸肌阶段,伸肌I组传入神经的激活会增加伸肌运动神经元的活动并延长伸肌阶段。这种伸肌阶段的延长可能在运动周期重置或不重置的情况下发生,根据模型,这取决于感觉输入分别影响RG和PF回路的程度。在屈曲期间施加相同的刺激会导致暂时重置为伸展,而不会改变后续运动周期的时间。该模型通过表明这种感觉输入影响PF网络而不影响RG来重现这种行为。该模型还表明,实验观察到的屈肌神经传入刺激的不同影响(相位延长与重置)是由于屈肌I组和II组传入神经对控制屈肌和伸肌运动神经元活动的PF和RG回路的相反影响所致。建模结果为运动的本体感受控制提供了见解。