Suppr超能文献

相似文献

1
Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
J Physiol. 2006 Dec 1;577(Pt 2):641-58. doi: 10.1113/jphysiol.2006.118711. Epub 2006 Sep 28.
2
Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
J Physiol. 2006 Dec 1;577(Pt 2):617-39. doi: 10.1113/jphysiol.2006.118703. Epub 2006 Sep 28.
3
Flexor reflex afferents reset the step cycle during fictive locomotion in the cat.
Exp Brain Res. 1998 Oct;122(3):339-50. doi: 10.1007/s002210050522.
5
Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
J Neurophysiol. 1996 Dec;76(6):4104-12. doi: 10.1152/jn.1996.76.6.4104.
8
Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion.
J Physiol. 2000 Jun 1;525 Pt 2(Pt 2):549-64. doi: 10.1111/j.1469-7793.2000.t01-1-00549.x.
10
Candidate Interneurons Mediating the Resetting of the Locomotor Rhythm by Extensor Group I Afferents in the Cat.
Neuroscience. 2020 Dec 1;450:96-112. doi: 10.1016/j.neuroscience.2020.09.017. Epub 2020 Sep 15.

引用本文的文献

2
Intrinsic noise reveals the stability of a neuronal network.
bioRxiv. 2025 Jul 27:2025.07.23.666219. doi: 10.1101/2025.07.23.666219.
5
EFFECTS OF SPINAL TRANSECTION AND LOCOMOTOR SPEED ON MUSCLE SYNERGIES OF THE CAT HINDLIMB.
bioRxiv. 2024 Sep 20:2024.09.19.613891. doi: 10.1101/2024.09.19.613891.
6
7
Rare phenomena of central rhythm and pattern generation in a case of complete spinal cord injury.
Nat Commun. 2023 Jun 6;14(1):3276. doi: 10.1038/s41467-023-39034-y.
9
Locomotor Pattern and Force Generation Modulated by Ionic Channels: A Computational Study of Spinal Networks Underlying Locomotion.
Front Comput Neurosci. 2022 Apr 14;16:809599. doi: 10.3389/fncom.2022.809599. eCollection 2022.
10
Contribution of Afferent Feedback to Adaptive Hindlimb Walking in Cats: A Neuromusculoskeletal Modeling Study.
Front Bioeng Biotechnol. 2022 Apr 8;10:825149. doi: 10.3389/fbioe.2022.825149. eCollection 2022.

本文引用的文献

1
Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
J Physiol. 2006 Dec 1;577(Pt 2):617-39. doi: 10.1113/jphysiol.2006.118703. Epub 2006 Sep 28.
2
Dynamic sensorimotor interactions in locomotion.
Physiol Rev. 2006 Jan;86(1):89-154. doi: 10.1152/physrev.00028.2005.
4
A role for hip position in initiating the swing-to-stance transition in walking cats.
J Neurophysiol. 2005 Nov;94(5):3497-508. doi: 10.1152/jn.00511.2005. Epub 2005 Aug 10.
5
Stumbling corrective reaction during fictive locomotion in the cat.
J Neurophysiol. 2005 Sep;94(3):2045-52. doi: 10.1152/jn.00175.2005. Epub 2005 May 25.
6
Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat.
J Neurophysiol. 2005 Sep;94(3):2053-62. doi: 10.1152/jn.00176.2005. Epub 2005 May 25.
8
Control of locomotor cycle durations.
J Neurophysiol. 2005 Aug;94(2):1057-65. doi: 10.1152/jn.00991.2004. Epub 2005 Mar 30.
9
Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat.
J Physiol. 2005 Mar 1;563(Pt 2):597-610. doi: 10.1113/jphysiol.2004.076034. Epub 2004 Dec 23.
10
Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
J Neurophysiol. 2004 Oct;92(4):2093-104. doi: 10.1152/jn.00325.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验