Suppr超能文献

非小细胞肺癌患者的4年死亡率:一种预后指数的制定与验证

4-year mortality in patients with non-small-cell lung cancer: development and validation of a prognostic index.

作者信息

Blanchon François, Grivaux Michel, Asselain Bernard, Lebas François-Xavier, Orlando Jean-Pierre, Piquet Jacques, Zureik Mahmoud

机构信息

Service de Pneumologie, Centre Hospitalier de Meaux, Meaux, France.

出版信息

Lancet Oncol. 2006 Oct;7(10):829-36. doi: 10.1016/S1470-2045(06)70868-3.

Abstract

BACKGROUND

Lung cancer is the commonest cause of death due to cancer in the world. Non-small-cell lung carcinoma (NSCLC) represents about 80% of overall lung cancer cases worldwide. An accurate predictive model of mortality in patients with NSCLC could be useful to clinicians, policy makers, and researchers involved in risk stratification. The objective of this study was to develop and validate a simple prognostic index for 4-year mortality in patients with NSCLC by use of information obtained at the time of lung cancer diagnosis.

METHODS

In 2000, 4669 patients with histologically or cytologically proven NSCLC were enrolled prospectively from 137 pneumology departments in French general hospitals. Patients not lost to follow-up (n=4479) were randomly assigned to the development cohort (n=2979) or the validation cohort (n=1500). Every patient's physician completed a standard and anonymous questionnaire. We used a Cox model to identify variables independently associated with mortality and weighted the variables to create a prognostic index.

FINDINGS

Median follow-up for survivors was 49 months (IQR 46-51). There were 2585 deaths (87%) in the development cohort and 1310 deaths (87%) in the validation cohort. Five independent predictors of mortality were identified: age (>70 years, 1 point); sex (male, 1 point); performance status at diagnosis (reduced activity, 3 points; active >50%, 5 points; inactive >50%, 8 points; and total incapacity, 10 points); histological type (large-cell carcinoma, 2 points); and tumour-node-metastasis (TNM) staging system (IIA or IIB, 3 points; IIIA or IIIB, 6 points; and IV, 8 points). The minimum and maximum possible point scores were 0 and 22, respectively. Scores of the prognostic index were strongly associated with 4-year mortality in the development cohort: 0-1 points predicted a 35% (95% CI 28-43) risk, 2-4 points a 59% (52-66) risk, 5-7 points a 77% (72-81) risk, 8-10 points an 88% (85-90) risk, 11-14 points a 97% (96-98) risk, and 15-22 points a 99% (97-100) risk. The corresponding percentages in the validation cohort were 36% (24-47), 60% (50-70), 77% (71-83), 89% (86-93), 96% (95-98), and 99% (98-100), respectively. The prognostic index showed good discrimination, with mean bootstrap c statistics of 0.85 (95% CI 0.84-0.86) in the development cohort and 0.86 (95% CI 0.85-0.87) in the validation cohort.

INTERPRETATION

This prognostic index, incorporating personal, tumour, and functional information would be helpful in guiding patient management, resource use, and the design of clinical trials.

摘要

背景

肺癌是全球癌症死亡的最常见原因。非小细胞肺癌(NSCLC)约占全球肺癌病例总数的80%。一个准确的NSCLC患者死亡率预测模型对于参与风险分层的临床医生、政策制定者和研究人员可能会有所帮助。本研究的目的是利用肺癌诊断时获得的信息,开发并验证一个用于NSCLC患者4年死亡率的简单预后指数。

方法

2000年,从法国综合医院的137个肺病科前瞻性纳入了4669例经组织学或细胞学证实的NSCLC患者。未失访的患者(n = 4479)被随机分配到开发队列(n = 2979)或验证队列(n = 1500)。每位患者的医生填写了一份标准的匿名问卷。我们使用Cox模型来识别与死亡率独立相关的变量,并对这些变量进行加权以创建一个预后指数。

结果

幸存者的中位随访时间为49个月(四分位间距46 - 51个月)。开发队列中有2585例死亡(87%),验证队列中有1310例死亡(87%)。确定了五个死亡率的独立预测因素:年龄(>70岁,1分);性别(男性,1分);诊断时的体能状态(活动减少,3分;活动能力>50%,5分;活动能力<50%,8分;完全无活动能力,10分);组织学类型(大细胞癌,2分);以及肿瘤-淋巴结-转移(TNM)分期系统(IIA或IIB,3分;IIIA或IIIB,6分;IV期,8分)。预后指数的最低和最高可能得分分别为0分和22分。预后指数得分与开发队列中的4年死亡率密切相关:0 - 1分预测风险为35%(95%CI 28 - 43),2 - 4分预测风险为59%(52 - 66),5 - 7分预测风险为77%(72 - 81),8 - 10分预测风险为88%(85 - 90),11 - 14分预测风险为97%(96 - 98),15 - 22分预测风险为99%(97 - 100)。验证队列中的相应百分比分别为36%(24 - 47)、60%(50 - 70)、77%(71 - 83)、89%(86 - 93)、96%(95 - 98)和99%(98 - 100)。该预后指数显示出良好的区分能力,开发队列中平均自抽样c统计量为0.85(95%CI 0.84 - 0.86),验证队列中为0.86(95%CI 0.85 - 0.87)。

解读

这个纳入了个人、肿瘤和功能信息的预后指数将有助于指导患者管理、资源利用以及临床试验的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验