Suppr超能文献

低速周期性δ踢系统的牛顿力学和相对论预测轨迹的比较。

Comparison of the Newtonian and relativistic predicted trajectories for a low-speed periodically delta-kicked system.

作者信息

Lan Boon Leong

机构信息

School of Engineering, Monash University, 46150 Petaling Jaya, Selangor, Malaysia.

出版信息

Chaos. 2006 Sep;16(3):033107. doi: 10.1063/1.2218379.

Abstract

The dynamics of a periodically delta-kicked Hamiltonian system moving at low speed (i.e., at speed much less than the speed of light) is studied numerically. In particular, the trajectory of the system predicted by Newtonian mechanics is compared with the trajectory predicted by special relativistic mechanics for the same parameters and initial conditions. We find that the Newtonian trajectory, although close to the relativistic trajectory for some time, eventually disagrees completely with the relativistic trajectory, regardless of the nature (chaotic, nonchaotic) of each trajectory. However, the agreement breaks down very fast if either the Newtonian or relativistic trajectory is chaotic, but very much slower if both the Newtonian and relativistic trajectories are nonchaotic. In the former chaotic case, the difference between the Newtonian and relativistic values for both position and momentum grows, on average, exponentially. In the latter nonchaotic case, the difference grows much slower, for example, linearly on average.

摘要

对低速(即速度远小于光速)运动的周期性δ驱动哈密顿系统的动力学进行了数值研究。具体而言,将牛顿力学预测的系统轨迹与在相同参数和初始条件下狭义相对论力学预测的轨迹进行了比较。我们发现,牛顿轨迹尽管在一段时间内接近相对论轨迹,但最终与相对论轨迹完全不一致,无论每条轨迹的性质(混沌、非混沌)如何。然而,如果牛顿轨迹或相对论轨迹是混沌的,这种一致性很快就会瓦解,但如果牛顿轨迹和相对论轨迹都是非混沌的,瓦解速度则要慢得多。在前一种混沌情况下,位置和动量的牛顿值与相对论值之间的差异平均呈指数增长。在后一种非混沌情况下,差异增长要慢得多,例如平均呈线性增长。

相似文献

2
Newtonian and special-relativistic predictions for the trajectories of a low-speed scattering system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036201. doi: 10.1103/PhysRevE.83.036201. Epub 2011 Mar 7.
3
Statistical predictions for the dynamics of a low-speed system: Newtonian versus special-relativistic mechanics.
PLoS One. 2012;7(5):e36430. doi: 10.1371/journal.pone.0036430. Epub 2012 May 11.
5
Newtonian versus special-relativistic statistical predictions for low-speed scattering.
PLoS One. 2012;7(11):e48447. doi: 10.1371/journal.pone.0048447. Epub 2012 Nov 12.
6
Braids of entangled particle trajectories.
Chaos. 2010 Mar;20(1):017516. doi: 10.1063/1.3262494.
9
Characterization of stickiness by means of recurrence.
Chaos. 2007 Dec;17(4):043101. doi: 10.1063/1.2785159.
10
Sensitivity of ray travel times.
Chaos. 2002 Sep;12(3):617-635. doi: 10.1063/1.1494250.

引用本文的文献

1
Newtonian versus special-relativistic statistical predictions for low-speed scattering.
PLoS One. 2012;7(11):e48447. doi: 10.1371/journal.pone.0048447. Epub 2012 Nov 12.
2
Statistical predictions for the dynamics of a low-speed system: Newtonian versus special-relativistic mechanics.
PLoS One. 2012;7(5):e36430. doi: 10.1371/journal.pone.0036430. Epub 2012 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验