Duncan Kelly E Rigby, Ngu Thanh T, Chan Jayna, Salgado Maria T, Merrifield Maureen E, Stillman Martin J
Department of Chemistry, The University of Western Ontario, London, ON, Canada, N6A 5B7.
Exp Biol Med (Maywood). 2006 Oct;231(9):1488-99. doi: 10.1177/153537020623100907.
This minireview specifically focuses on recent studies carried out on structural aspects of metal-free metallothionein (MT), the mechanism of metal binding for copper and arsenic, structural studies using x-ray absorption spectroscopy and molecular mechanics modeling, and speciation studies of a novel cadmium and arsenic binding algal MT. Molecular mechanics-molecular dynamics calculations of apo-MT show that significant secondary structural features are retained by the polypeptide backbone upon sequential removal of the metal ions, which is stabilized by a possible H-bonding network. In addition, the cysteinyl sulfurs were shown to rotate from within the domain core, where they are found in the metallated state, to the exterior surface of the domain, suggesting an explanation for the rapid metallation reactions that were measured. Mixing Cu6beta-MT with Cd4alpha-MT and Cu6alpha-MT with Cd3beta-MT resulted in redistribution of the metal ions to mixed metal species in each domain; however, the Cu+ ions preferentially coordinated to the beta domain in each case. Reaction of As3+ with the individual metal-free beta and alpha domains of MT resulted in three As3+ ions coordinating to each of the domains, respectively, in a proposed distorted trigonal pyramid structure. Kinetic analysis provides parameters that allow simulation of the binding of each of the As3+ ions. X-ray absorption spectroscopy provides detailed information about the coordination environment of the absorbing element. We have combined measurement of x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) data with extensive molecular dynamics calculations to determine accurate metal-thiolate structures. Simulation of the XANES data provides a powerful technique for probing the coordination structures of metals in metalloproteins. The metal binding properties of an algal MT, Fucus vesiculosus, has been investigated by UV absorption and circular dichroism spectroscopy and electrospray ionization-mass spectrometry. The 16 cysteine residues of this algal MT were found to coordinate six Cd2+ ions in two domains with stoichiometries of a novel Cd3S7 cluster and a beta-like Cd3S9 cluster.
本综述特别关注近期关于无金属金属硫蛋白(MT)结构方面的研究、铜和砷的金属结合机制、使用X射线吸收光谱和分子力学建模的结构研究,以及一种新型镉和砷结合藻类MT的形态研究。脱辅基MT的分子力学 - 分子动力学计算表明,在依次去除金属离子后,多肽主链保留了显著的二级结构特征,这通过可能的氢键网络得以稳定。此外,半胱氨酸硫原子显示从金属化状态下所在的结构域核心内部旋转到结构域的外表面,这为所测量的快速金属化反应提供了解释。将Cu6β - MT与Cd4α - MT以及Cu6α - MT与Cd3β - MT混合,导致每个结构域中的金属离子重新分布形成混合金属物种;然而,在每种情况下,Cu⁺离子优先与β结构域配位。As³⁺与MT的单个无金属β和α结构域反应,分别导致三个As³⁺离子以拟扭曲三角锥结构与每个结构域配位。动力学分析提供了允许模拟每个As³⁺离子结合的参数。X射线吸收光谱提供了关于吸收元素配位环境的详细信息。我们将X射线吸收近边结构(XANES)和扩展X射线吸收精细结构(EXAFS)数据的测量与广泛的分子动力学计算相结合,以确定准确的金属硫醇盐结构。XANES数据的模拟为探测金属蛋白中金属的配位结构提供了一种强大的技术。通过紫外吸收、圆二色光谱和电喷雾电离 - 质谱研究了一种藻类MT(墨角藻)的金属结合特性。发现这种藻类MT的16个半胱氨酸残基在两个结构域中配位六个Cd²⁺离子,其化学计量比为一种新型的Cd3S7簇和一个类似β的Cd3S9簇。