Bernhardt R R, Chitnis A B, Lindamer L, Kuwada J Y
Department of Biology, University of Michigan, Ann Arbor 48109.
J Comp Neurol. 1990 Dec 15;302(3):603-16. doi: 10.1002/cne.903020315.
Previous studies indicated that the developing fish spinal cord was a simple system containing a small number of distinguishable neuronal cell types (Eisen et al., Nature 320:269-271, '86; Kuwada, Science, 233:740-746, '86). To verify this we have characterized the cellular anatomy of the spinal cord of developing zebrafish in order to determine the number, identities, and organization of the spinal neurons. Spinal neurons were labeled by intracellular dye injections, application of an axonal tracer dye to all or subsets of the axonal tracts, and application of antibodies which recognize embryonic neurons. We found that nine classes of neurons could be identified based on soma size and position, pattern of dendrites, axonal trajectory, and time of axonogenesis. These are two classes of axial motor neurons, which have been previously characterized (Myers, J. Comp. Neurol. 236:555-561, '85), one class of sensory neurons, and six classes of interneurons. One of the interneuron classes could be subclassified as primary and secondary based on criteria similar to those used to classify the axial motor neurons into primary and secondary classes. The early cord (18-20 hours) is an extremely simple system and contains approximately 18 lateral cell bodies per hemisegment, which presumably are post-mitotic cells. By this stage, five of the neuronal classes have begun axonogenesis including the primary motor neurons, sensory neurons, and three classes of interneurons. By concentrating on these early stages when the cord is at its simplest, pathfinding by growth cones of known identities can be described in detail. Then it should be possible to test many different mechanisms which may guide growth cones in the vertebrate central nervous system (CNS).
先前的研究表明,发育中的鱼类脊髓是一个简单的系统,包含少数可区分的神经元细胞类型(艾森等人,《自然》320:269 - 271,1986年;久和田,《科学》,233:740 - 746,1986年)。为了验证这一点,我们对发育中的斑马鱼脊髓的细胞解剖结构进行了表征,以确定脊髓神经元的数量、身份和组织方式。通过细胞内染料注射、将轴突示踪染料应用于所有或部分轴突束以及应用识别胚胎神经元的抗体来标记脊髓神经元。我们发现,根据细胞体大小和位置、树突模式、轴突轨迹以及轴突发生时间,可以识别出九类神经元。其中包括两类先前已被表征的轴突运动神经元(迈尔斯,《比较神经学杂志》236:555 - 561,1985年)、一类感觉神经元和六类中间神经元。基于与用于将轴突运动神经元分为初级和次级类别相似的标准,其中一类中间神经元可进一步细分为初级和次级。早期脊髓(18 - 20小时)是一个极其简单的系统,每个半节段大约包含18个外侧细胞体,这些细胞体大概是有丝分裂后的细胞。到这个阶段,五类神经元已经开始轴突发生,包括初级运动神经元、感觉神经元和三类中间神经元。通过关注脊髓处于最简单状态的这些早期阶段,可以详细描述已知身份的生长锥的路径寻找过程。然后就有可能测试许多不同的机制,这些机制可能引导脊椎动物中枢神经系统(CNS)中的生长锥。