Suppr超能文献

单轴三维类伊辛系统的平均交叉函数。

Mean crossover functions for uniaxial three-dimensional Ising-like systems.

作者信息

Garrabos Yves, Bervillier Claude

机构信息

Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, ICMCB-CNRS, UPR 9048, Université Bordeaux I - 87, avenue du Docteur Schweitzer, F 33608 PESSAC Cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021113. doi: 10.1103/PhysRevE.74.021113. Epub 2006 Aug 11.

Abstract

We give simple expressions for the mean of the max and min bounds of the critical-to-classical crossover functions, previously calculated [Bagnuls and Bervillier, Phys. Rev. E 65, 066132 (2002)] within the massive renormalization scheme of the Phi(d)4(n) model in three dimensions (d = 3) and scalar order parameter (n = 1) of the Ising-like universality class. The mean functions are determined relying on the properties of the theoretical functions in the two limiting three-dimensional (3D) Ising-like and mean-field-like descriptions close to the Wilson-Fisher fixed point and to the Gaussian fixed point, respectively. Such descriptions correspond to the preasymptotic domains near each fixed point where a Wegner expansion restricted to two terms (leading and first confluent terms) is valid. The Ising-like preasymptotic domain description includes the correlations between parameters due to the error-bar determination of the exponents and amplitude combinations very close to the Wilson-Fisher fixed point. Adding the equivalent description of the mean field preasymptotic domain close to the Gaussian fixed point leads to define each mean crossover function with three calculated parameters. Fixing a unique value of one parameter whatever the selected mean crossover function, we use this parameter as a relative sensor to estimate the dominant nature, either (Ising-like) critical, or (mean-field-like) classical, of the crossover behavior. Finally, we obtain an explicit criterion to measure the extension of the Ising-like preasymptotic domain which can then permit to coherently account for measurements performed in systems where the asymptotical approach to the critical point remains finite, using a well-controlled number of system-dependent parameters (like in the subclass of one-component fluids).

摘要

我们给出了临界到经典交叉函数的最大和最小边界均值的简单表达式,该函数先前已在三维(d = 3)的Phi(d)4(n)模型和类伊辛普适类的标量序参量(n = 1)的大质量重整化方案中计算得出[巴尼尔斯和贝维利耶,《物理评论E》65,066132(2002)]。均值函数的确定依赖于理论函数在分别接近威尔逊 - 费舍尔不动点和高斯不动点的两种极限三维(3D)类伊辛和类平均场描述中的性质。这样的描述对应于每个不动点附近的预渐近域,在该域中,限于两项(主导项和第一合流项)的韦格纳展开是有效的。类伊辛预渐近域描述包括由于非常接近威尔逊 - 费舍尔不动点的指数和振幅组合的误差线确定而导致的参数之间的相关性。加上接近高斯不动点的平均场预渐近域的等效描述,从而用三个计算参数定义每个平均交叉函数。无论选择哪个平均交叉函数,固定一个参数的唯一值,我们将此参数用作相对传感器,以估计交叉行为的主导性质,即(类伊辛)临界或(类平均场)经典性质。最后,我们得到一个明确的准则来测量类伊辛预渐近域的扩展,然后可以使用数量可控的与系统相关的参数(如在单组分流体子类中),连贯地解释在临界点的渐近方法仍然有限的系统中进行的测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验