Fradkin Eduardo, Moore Joel E
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801-3080, USA.
Phys Rev Lett. 2006 Aug 4;97(5):050404. doi: 10.1103/PhysRevLett.97.050404.
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.
二分系统A∪B(或逻辑和B)的纯量子态的纠缠熵被定义为通过对两部分之一进行求迹得到的约化密度矩阵的冯·诺依曼熵。在一维中,临界基态的纠缠在子系统大小上呈对数发散,对于共形不变临界点,其具有一个通用系数,该系数与共形场论的中心荷相关。我们发现,在两个空间维度中,标准的z = 2共形量子临界点类的纠缠熵,除了AB边界大小的非通用“面积律”贡献是线性的之外,通常还有一个通用的对数发散修正,它完全由划分的几何结构以及描述临界波函数的场论的中心荷所决定。