Albillos Silvia M, Busto María D, Perez-Mateos Manuel, Ortega Natividad
Department of Food Packaging and Processing, National Center for Food Safety and Technology, Building 90, Room 211, 6502 South Archer Road, Summit Argo, IL 60501, USA.
J Agric Food Chem. 2006 Oct 18;54(21):8281-7. doi: 10.1021/jf0613381.
The effect of the ripening time on the proteolytic process in cheeses made from ewe's milk during a 139-day ripening period was monitored by the use of capillary electrophoresis of pH 4.6 insoluble fraction. Totals of 18 and 21 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks correspond to intact ovine caseins and their hydrolysis products (alpha(s1)-casein I, alpha(s1)-casein II, alpha(s1)-casein III, alpha(s2)-casein, beta(1)-casein, beta(2)-casein, p-kappa-casein, alpha(s1)-I-casein, gamma(1)-casein, gamma(2)-casein, and gamma(3)-casein). The alpha(s)-caseins (alpha(s1)- and alpha(s2)-casein) displayed similar degradation pattern to one another, but different from those of beta-caseins (beta(1)- and beta(2)-casein). beta-Caseins were very much undergoing lesser degradation during the ripening time than alpha(s)-casein. Finally, partial least-squares regression and principal components regression were used to predict the ripening time in cheeses. The models obtained yielded good results since the root-mean-square error in prediction by cross validation was <8.6 days in all cases.
通过对pH 4.6不溶性部分进行毛细管电泳,监测了成熟时间对用羊奶制成的奶酪在139天成熟期间蛋白水解过程的影响。在用熔融石英毛细管和中性毛细管(亲水涂层)获得的电泳图中,分别识别并匹配了总共18个和21个峰。这些峰对应于完整的羊酪蛋白及其水解产物(α(s1)-酪蛋白I、α(s1)-酪蛋白II、α(s1)-酪蛋白III、α(s2)-酪蛋白、β(1)-酪蛋白、β(2)-酪蛋白、p-κ-酪蛋白、α(s1)-I-酪蛋白、γ(1)-酪蛋白、γ(2)-酪蛋白和γ(3)-酪蛋白)。α(s)-酪蛋白(α(s1)-和α(s2)-酪蛋白)彼此显示出相似的降解模式,但与β-酪蛋白(β(1)-和β(2)-酪蛋白)的降解模式不同。在成熟期间,β-酪蛋白的降解程度比α(s)-酪蛋白小得多。最后,使用偏最小二乘回归和主成分回归来预测奶酪的成熟时间。获得的模型产生了良好的结果,因为在所有情况下,交叉验证预测的均方根误差均<8.6天。