Wolf C, Brüss M, Hänisch B, Göthert M, von Kügelgen I, Molderings G J
Institute of Pharmacology and Toxicology, Universitätsklinikum Bonn, Reuterstr. 2b, 53113 Bonn, Germany.
Mol Pharmacol. 2007 Jan;71(1):276-83. doi: 10.1124/mol.106.028449. Epub 2006 Oct 17.
The aim of the present study was to challenge potential mechanisms of action underlying the inhibition of tumor cell proliferation by agmatine. Agmatine inhibited proliferation of the human hepatoma cells HepG2, the human adenocarcinoma cells HT29, the rat hepatoma cells McRH7777, and the rat pheochromocytoma cells PC-12. Inhibition of proliferation of HepG2 cells was associated with an abolition of expression of ornithine decarboxylase (ODC) protein and a doubling of mRNA content encoding ODC. In HepG2 cells, silencing of ODC-antizyme-1, but not of antizyme inhibitor, by RNA interference resulted in an increase of agmatine's antiproliferative effect. Thus, the distinct decrease in intracellular polyamine content by agmatine was due to a reduced translation of the synthesizing protein ODC but was not essentially mediated by induction of ODC-antizyme or blockade of antizyme inhibitor. In interaction experiments 1 mM L-arginine, 1 mM D-arginine, 1 mM citrulline, 100 microM N(omega)-nitro-L-arginine methyl ester, 1 and 10 microM sodium nitroprusside, and 1 microM N1-guanyl-1,7-diaminoheptane failed to alter agmatine's antiproliferative effect. Hence, the antiproliferative effect of agmatine in HT29 and HepG2 cells is due to an interaction with neither the NO synthases, the hypusination of eIF5A, nor an agmatine-induced reduction in availability of intracellular L-arginine. L-Arginine and citrulline, but not d-arginine, inhibited tumor cell proliferation by themselves. Their inhibitory effect was abolished after silencing of arginine decarboxylase (ADC) expression by RNA interference indicating the conversion to agmatine by ADC. Finally, in the four cell lines under study, agmatine-induced inhibition of cell proliferation was paralleled by an increase in intracellular caspase-3 activity, indicating a promotion of apoptosis.
本研究的目的是探究胍丁胺抑制肿瘤细胞增殖的潜在作用机制。胍丁胺可抑制人肝癌细胞HepG2、人腺癌细胞HT29、大鼠肝癌细胞McRH7777和大鼠嗜铬细胞瘤细胞PC-12的增殖。HepG2细胞增殖的抑制与鸟氨酸脱羧酶(ODC)蛋白表达的消失以及ODC编码mRNA含量的加倍有关。在HepG2细胞中,通过RNA干扰沉默ODC-抗酶-1而非抗酶抑制剂,导致胍丁胺抗增殖作用增强。因此,胍丁胺使细胞内多胺含量显著降低是由于合成蛋白ODC的翻译减少,但并非主要由ODC-抗酶的诱导或抗酶抑制剂的阻断介导。在相互作用实验中,1 mM L-精氨酸、1 mM D-精氨酸、1 mM瓜氨酸、100 μM N(ω)-硝基-L-精氨酸甲酯、1和10 μM硝普钠以及1 μM N1-胍基-1,7-二氨基庚烷均未改变胍丁胺的抗增殖作用。因此,胍丁胺在HT29和HepG2细胞中的抗增殖作用既不与一氧化氮合酶相互作用,也不与eIF5A的hypusination作用相关,也不是由胍丁胺诱导的细胞内L-精氨酸可用性降低所致。L-精氨酸和瓜氨酸自身可抑制肿瘤细胞增殖,但D-精氨酸无此作用。RNA干扰使精氨酸脱羧酶(ADC)表达沉默后,其抑制作用消失,表明其通过ADC转化为胍丁胺。最后,在所研究的四种细胞系中,胍丁胺诱导的细胞增殖抑制与细胞内半胱天冬酶-3活性增加同时出现,表明促进了细胞凋亡。