d'Onofrio Alberto, Tomlinson Ian P M
Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milano, Italy I-20141. alberto.d'
J Theor Biol. 2007 Feb 7;244(3):367-74. doi: 10.1016/j.jtbi.2006.08.022. Epub 2006 Sep 8.
We present a development of a model [Tomlinson, I.P.M., Bodmer, W.F., 1995. Failure of programmed cell death and differentiation as causes of tumors: Some simple mathematical models. Proc. Natl. Acad. Sci. USA 92, 11130-11134.] of the relationship between cells in three compartments of the intestinal crypt: stem cells, semi-differentiated cells and fully differentiated cells. Stem and semi-differentiated cells may divide to self-renew, undergo programmed death or progress to semi-differentiated and fully differentiated cells, respectively. The probabilities of each of these events provide the most important parameters of the model. Fully differentiated cells do not divide, but a proportion undergoes programmed death in each generation. Our previous models showed that failure of programmed death--for example, in tumorigenesis--could lead either to exponential growth in cell numbers or to growth to some plateau. Our new models incorporate plausible fluctuation in the parameters of the model and introduce nonlinearity by assuming that the parameters depend on the numbers of cells in each state of differentiation. We present detailed analysis of the equilibrium conditions for various forms of these models and, where appropriate, simulate the changes in cell numbers. We find that the model is characterized by bifurcation between increase in cell numbers to stable equilibrium or explosive exponential growth; in a restricted number of cases, there may be multiple stable equilibria. Fluctuation in cell numbers undergoing programmed death, for example caused by tissue damage, generally makes exponential growth more likely, as long as the size of the fluctuation exceeds a certain critical value for a sufficiently long period of time. In most cases, once exponential growth has started, this process is irreversible. In some circumstances, exponential growth is preceded by a long plateau phase, of variable duration, mimicking equilibrium: thus apparently self-limiting lesions may not be so in practice and the duration of growth of a tumor may be impossible to predict on the basis of its size.
我们展示了一个模型[汤姆林森,I.P.M.,博德默,W.F.,1995年。程序性细胞死亡和分化失败作为肿瘤的成因:一些简单的数学模型。《美国国家科学院院刊》92,11130 - 11134。]的发展情况,该模型描述了肠道隐窝三个区室中的细胞:干细胞、半分化细胞和完全分化细胞之间的关系。干细胞和半分化细胞可以分裂进行自我更新、经历程序性死亡或分别发育为半分化细胞和完全分化细胞。这些事件各自发生的概率是该模型最重要的参数。完全分化的细胞不分裂,但每一代中有一定比例会经历程序性死亡。我们之前的模型表明,程序性死亡的失败——例如在肿瘤发生过程中——可能导致细胞数量呈指数增长或增长至某个稳定水平。我们的新模型纳入了模型参数中合理的波动,并通过假设参数取决于每种分化状态下的细胞数量引入了非线性。我们对这些模型的各种形式的平衡条件进行了详细分析,并在适当情况下模拟了细胞数量的变化。我们发现该模型的特征是细胞数量增加到稳定平衡或爆发性指数增长之间的分岔;在有限的几种情况下,可能存在多个稳定平衡。例如由组织损伤引起的经历程序性死亡的细胞数量波动,通常会使指数增长更有可能发生,只要波动幅度在足够长的时间内超过某个临界值。在大多数情况下,一旦指数增长开始,这个过程就是不可逆的。在某些情况下,指数增长之前会有一个持续时间可变的长稳定期,类似于平衡状态:因此看似自我限制的病变在实际中可能并非如此,肿瘤生长的持续时间可能无法根据其大小来预测。