Danilchik Michael V, Brown Elizabeth E, Riegert Kristen
Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR 97239-3097, USA.
Development. 2006 Nov;133(22):4517-26. doi: 10.1242/dev.02642. Epub 2006 Oct 18.
Vertebrate embryos define an anatomic plane of bilateral symmetry by establishing rudimentary anteroposterior and dorsoventral (DV) axes. A left-right (LR) axis also emerges, presaging eventual morphological asymmetries of the heart and other viscera. In the radially symmetric egg of Xenopus laevis, the earliest steps in DV axis determination are driven by microtubule-dependent localization of maternal components toward the prospective dorsal side. LR axis determination is linked in time to this DV-determining process, but the earliest steps are unclear. Significantly, no cytoskeletal polarization has been identified in early embryos capable of lateral displacement of maternal components. Cleaving Xenopus embryos and parthenogenetically activated eggs treated with 2,3-butanedione monoxime (BDM) undergo a dramatic large-scale torsion, with the cortex of the animal hemisphere shearing in an exclusively counterclockwise direction past the vegetal cortex. Long actin fibers develop in a shear zone paralleling the equator. Drug experiments indicate that the actin is not organized by microtubules, and depends on the reorganization of preexisting f-actin fibers rather than new actin polymerization. The invariant chirality of this drug response suggests a maternally inherited, microfilament-dependent organization within the egg cortex that could play an early role in LR axis determination during the first cell cycle. Consistent with this hypothesis, brief disruption of cortical actin during the first cell cycle randomizes the LR orientation of tadpole heart and gut.
脊椎动物胚胎通过建立初步的前后轴和背腹(DV)轴来定义双侧对称的解剖平面。左右(LR)轴也会出现,预示着心脏和其他内脏最终的形态不对称。在非洲爪蟾的辐射对称卵中,DV轴确定的最早步骤是由母体成分依赖微管的向预期背侧定位驱动的。LR轴的确定在时间上与这个DV确定过程相关联,但最早的步骤尚不清楚。值得注意的是,在能够使母体成分侧向移位的早期胚胎中,尚未发现细胞骨架极化现象。用2,3-丁二酮一肟(BDM)处理的分裂期非洲爪蟾胚胎和孤雌激活卵会发生剧烈的大规模扭转,动物半球的皮质以逆时针方向完全剪切过植物皮质。长肌动蛋白纤维在平行于赤道的剪切区形成。药物实验表明,肌动蛋白不是由微管组织的,而是依赖于预先存在的f-肌动蛋白纤维的重组,而不是新的肌动蛋白聚合。这种药物反应的不变手性表明卵皮质内存在母体遗传的、依赖微丝的组织,这可能在第一个细胞周期的LR轴确定中起早期作用。与这一假设一致的是,在第一个细胞周期中短暂破坏皮质肌动蛋白会使蝌蚪心脏和肠道的LR方向随机化。